

TL072, TL072H, TL072A, TL072B TL074, TL074H, TL074A, TL074B, TL072M, TL074M

TL07xx Low-Noise FET-Input Operational Amplifiers

1 Features

High slew rate: 20 V/µs (TL07xH, typ)

Low offset voltage: 1 mV (TL07xH, typ)

Low offset voltage drift: 2 µV/°C

Low power consumption: 940 µA/ch (TL07xH, typ)

Wide common-mode and differential voltage ranges

 Common-mode input voltage range includes V_{CC+}

Low input bias and offset currents

Low noise:

 $V_n = 18 \text{ nV}/\sqrt{\text{Hz}}$ (typ) at f = 1 kHz

Output short-circuit protection

Low total harmonic distortion: 0.003% (typ)

Wide supply voltage: ±2.25 V to ±20 V, 4.5 V to 40 V

2 Applications

Solar energy: string and central inverter

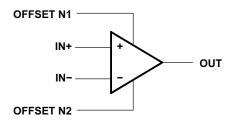
Motor drives: AC and servo drive control and power stage modules

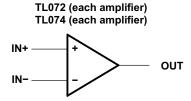
Single phase online UPS

Three phase UPS

Pro audio mixers

Battery test equipment


3 Description


The TL07xH (TL071H, TL072H, and TL074H) family of devices are the next-generation versions of the industry-standard TL07x (TL071, TL072, and TL074) devices. These devices provide outstanding value for cost-sensitive applications, with features including low offset (1 mV, typical), high slew rate (20 V/µs), and common-mode input to the positive supply. High ESD (1.5 kV, HBM), integrated EMI and RF filters, and operation across the full -40°C to 125°C enable the TL07xH devices to be used in the most rugged and demanding applications.

Device Information

PART NUMBER ⁽¹⁾	PACKAGE	BODY SIZE (NOM)
	PDIP (8)	9.59 mm × 6.35 mm
	SC70 (5)	2.00 mm × 1.25 mm
TL071x	SO (8)	6.20 mm × 5.30 mm
	SOIC (8)	4.90 mm × 3.90 mm
	SOT-23 (5)	1.60 mm × 1.20 mm
	PDIP (8)	9.59 mm × 6.35 mm
	SO (8)	6.20 mm × 5.30 mm
TL072x	SOIC (8)	4.90 mm × 3.90 mm
	SOT-23 (8)	2.90 mm × 1.60 mm
	TSSOP (8)	4.40 mm × 3.00 mm
	CDIP (8)	9.59 mm × 6.67 mm
TL072M	CFP (10)	6.12 mm × 3.56 mm
	LCCC (20)	8.89 mm × 8.89 mm
	PDIP (14)	19.30 mm × 6.35 mm
	SO (14)	10.30 mm × 5.30 mm
TL074x	SOIC (14)	8.65 mm × 3.91 mm
TLU74X	SOT-23 (14)	4.20 mm × 2.00 mm
	SSOP (14)	6.20 mm × 5.30 mm
	TSSOP (14)	5.00 mm × 4.40 mm
	CDIP (14)	19.56 mm × 6.92 mm
TL074M	CFP (14)	9.21 mm × 6.29 mm
	LCCC (20)	8.89 mm × 8.89 mm

For all available packages, see the orderable addendum at the end of the data sheet.

Copyright © 2017, Texas Instruments Incorporated

Logic Symbols

Table of Contents

1 Features1	6.22 Electrical Characteristics: TL071M, TL072M22
2 Applications	6.23 Electrical Characteristics: TL074M
3 Description	6.24 Switching Characteristics: TL07xM
4 Revision History2	6.25 Switching Characteristics: TL07xC, TL07xAC,
5 Pin Configuration and Functions4	TL07xBC, TL07xI
6 Specifications	6.26 Typical Characteristics: TL07xH25
6.1 Absolute Maximum Ratings: TL07xH11	6.27 Typical Characteristics: All Devices Except
6.2 Absolute Maximum Ratings: All Devices Except	TL07xH32
TL07xH11	7 Parameter Measurement Information36
6.3 ESD Ratings: TL07xH11	8 Detailed Description37
6.4 ESD Ratings: All Devices Except TL07xH12	8.1 Overview
6.5 Recommended Operating Conditions: TL07xH 12	8.2 Functional Block Diagram37
6.6 Recommended Operating Conditions: All	8.3 Feature Description38
Devices Except TL07xH12	8.4 Device Functional Modes38
6.7 Thermal Information for Single Channel: TL071H 12	9 Application and Implementation39
6.8 Thermal Information: TL071x13	9.1 Application Information39
6.9 Thermal Information for Dual Channel: TL072H 13	9.2 Typical Application39
6.10 Thermal Information: TL072x13	9.3 Unity Gain Buffer40
6.11 Thermal Information: TL072x (cont.)14	9.4 System Examples41
6.12 Thermal Information for Quad Channel: TL074H14	10 Power Supply Recommendations42
6.13 Thermal Information: TL074x14	11 Layout42
6.14 Thermal Information: TL074x (cont)15	11.1 Layout Guidelines42
6.15 Thermal Information: TL074x (cont)15	11.2 Layout Example43
6.16 Thermal Information15	12 Device and Documentation Support44
6.17 Electrical Characteristics: TL07xH16	12.1 Receiving Notification of Documentation Updates44
6.18 Electrical Characteristics: TL071C, TL072C,	12.2 Support Resources44
TL074C18	12.3 Trademarks44
6.19 Electrical Characteristics: TL071AC, TL072AC,	12.4 Electrostatic Discharge Caution44
TL074AC19	12.5 Glossary44
6.20 Electrical Characteristics: TL071BC, TL072BC,	13 Mechanical, Packaging, and Orderable
TL074BC20	Information44
6.21 Electrical Characteristics: TL071I, TL072I,	
TL074I21	

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision P (November 2020) to Revision Q (June 2021)	Page
Deleted VSSOP (8) package from the Device Information section	1
• Added DBV, DCK, and D packages to TL071H in Pin Configuration and Functions section	4
Deleted DGK package from TL072x in Pin Configuration and Functions section	4
Deleted tables with duplicate information from the Specifications section	11
Added D, DCK, and DBV package thermal information in Thermal Information for Single Channe section	
Added D, DDF, and PW package thermal information in Thermal Information for Dual Channel: TI section	_072H
 Added I_B and I_{OS} specification for single channel DCK and DBV package Added I_Q spec for TL071H 	
Deleted Related Links section from the Device and Documentation Support section	
Changes from Revision O (October 2020) to Revision P (November 2020)	Page
Added SOIC and TSSOP package thermal information in Thermal Information for Quad Channel:	TL074H

www.ti.com

•	Added Typical Characteristics:TL07xH section in Specifications section	25
С	hanges from Revision N (July 2017) to Revision O (October 2020)	Page
•	Updated the numbering format for tables, figures, and cross-references throughout the document	
•	Features of TL07xH added to the <i>Features</i> section	
•	Added link to applications in the <i>Applications</i> section	
•	Added TL07xH in the <i>Description</i> section	
•	Added TL07xH device in the <i>Device Information</i> section	
•	Added SOT-23 (14), VSSOP (8), SOT-23 (8), SC70 (5), and SOT-23 (5) packages to the <i>Device Inform</i> section	
	Added TSSOP, VSSOP and DDF packages to TL072x in <i>Pin Configuration and Functions</i> section	
•	Added DYY package to TL074x in <i>Pin Configuration and Functions</i> section	
	Removed Table of Graphs from the <i>Typical Characteistics</i> section	
•	Deleted reference to obsolete documentation in <i>Layout Guidelines</i> section	
•	Removed Related Documentation section	
_	hanges from Revision M (February 2014) to Revision N (July 2017)	Page
<u>.</u>	Updated data sheet text to latest documentation and translation standards	
•	Added TL072M and TL074M devices to data sheet	
	Rewrote text in <i>Description</i> section	
	Changed TL07x 8-pin PDIP package to 8-pin CDIP package in <i>Device Information</i> table	
	Deleted 20-pin LCCC package from <i>Device Information</i> table	
	Added 2017 copyright statement to front page schematic	
	Deleted TL071x FK (LCCC) pinout drawing and pinout table in <i>Pin Configurations and Functions</i> section	
	Updated pinout diagrams and pinout tables in <i>Pin Configurations and Functions</i> section	
	Deleted differential input voltage parameter from <i>Absolute Maximum Ratings</i> table	
	Deleted table notes from <i>Absolute Maximum Ratings</i> table	
	Added new table note to Absolute Maximum Ratings table	
	Changed minimum supply voltage value from –18 V to –0.3 V in <i>Absolute Maximum Ratings</i> table	
	Changed maximum supply voltage from 18 V to 36 V in <i>Absolute Maximum Ratings</i> table	
	Changed minimum input voltage value from –15 V to V _{CC} – 0.3 V in <i>Absolute Maximum Ratings</i> table.	
	Changed maximum input voltage from 15 V to V _{CC} + 36 V in <i>Absolute Maximum Ratings</i> table	
	Added input clamp current parameter to Absolute Maximum Ratings table	
•	Changed common-mode voltage maximum value from $V_{CC+} - 4 \text{ V}$ to V_{CC+} in the <i>Recommended Opera</i>	
	Conditions table	12
•	Changed devices in <i>Recommended Operating Conditions</i> table from TL07xA and TL07xB to TL07xAC	
	TL07xBCAdded TL07xI operating free-air temperature minimum value of –40°C to <i>Recommended Operating</i>	12
٠	Conditions table	10
	Added U (CFP) package thermal values to <i>Thermal Information: TL072x (cont.)</i> table	
	Added W (CFP) package thermal values to <i>Thermal Information: TL074x (cont.)</i> table	
	Added Figure 6-59 to Typical Characteristics section	
	Reformatted document references in <i>Layout Guidelines</i> section	
_	Reformatied document references in Layout Guidelines Section	42
С	hanges from Revision L (February 2014) to Revision M (February 2014)	Page
•	Added Device Information table, Pin Configuration and Functions section, ESD Ratings table, Feature	
	Description section, Device Functional Modes, Application and Implementation section, Power Supply	
	Recommendations section, Layout section	1
С	hanges from Revision K (January 2014) to Revision L (February 2014)	Page
•	Moved T _{stg} to Handling Ratings table	12
_		

5 Pin Configuration and Functions

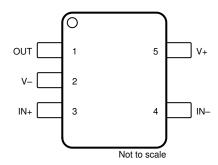



Figure 5-1. TL071H DBV and DCK Package 5-Pin SOT-23, and SC70 Top View

NC- no internal connection

Figure 5-2. TL071H D Package 8-Pin SOIC Top View

Table 5-1. Pin Functions: TL071H

PIN		I/O	DESCRIPTION	
NAME	DBV, DCK	D	1/0	DESCRIPTION
IN-	4	2	I	Inverting input
IN+	3	3	I	Noninverting input
NC		8	_	Do not connect
NC		1	_	Do not connect
NC		5	_	Do not connect
OUT	1	6	0	Output
VCC-	2	4	_	Power supply
VCC+	5	7	_	Power supply

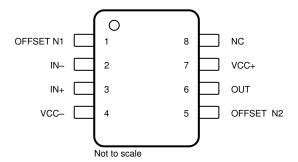


Figure 5-3. TL071x D, P, and PS Package 8-Pin SOIC, PDIP, and SO **Top View**

Table 5-2. Pin Functions: TL071x

PIN		I/O	DESCRIPTION
NAME	NO.	1/0	DESCRIPTION
IN-	2	I	Inverting input
IN+	3	I	Noninverting input
NC	8	_	Do not connect
OFFSET N1	1	_	Input offset adjustment
OFFSET N2	5	_	Input offset adjustment
OUT	6	0	Output
VCC-	4	_	Power supply
VCC+	7	_	Power supply

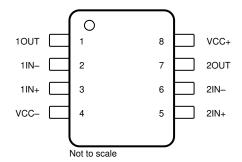


Figure 5-4. TL072x D, DDF, JG, P, PS, and PW Package 8-Pin SOIC, SOT-23 (8), CDIP, PDIP, SO, and TSSOP Top View

Table 5-3. Pin Functions: TL072x

	PIN		DESCRIPTION
NAME	NO.	- I/O	DESCRIPTION
1IN-	2	I	Inverting input
1IN+	3	I	Noninverting input
10UT	1	0	Output
2IN-	6	I	Inverting input
2IN+	5	I	Noninverting input
2OUT	7	0	Output
VCC-	4	_	Power supply
VCC+	8	_	Power supply

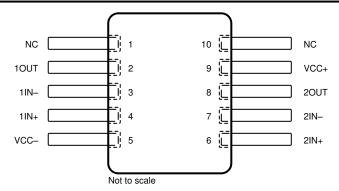


Figure 5-5. TL072x U Package 10-Pin CFP **Top View**

Table 5-4. Pin Functions: TL072x

PIN		I/O	DESCRIPTION
NAME	NO.	1/0	DESCRIPTION
1IN-	3	I	Inverting input
1IN+	4	I	Noninverting input
10UT	2	0	Output
2IN-	7	I	Inverting input
2IN+	6	I	Noninverting input
2OUT	8	0	Output
NC	1, 10	_	Do not connect
VCC-	5	_	Power supply
VCC+	9	_	Power supply

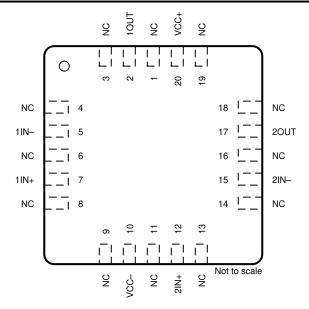


Figure 5-6. TL072 FK Package 20-Pin LCCC Top View

Table 5-5. Pin Functions: TL072x

	PIN		
		I/O	DESCRIPTION
NAME	NO.		
1IN-	5	I	Inverting input
1IN+	7	I	Noninverting input
10UT	2	0	Output
2IN-	15	I	Inverting input
2IN+	12	I	Noninverting input
2OUT	17	0	Output
NC	1, 3, 4, 6, 8, 9, 11, 13, 14, 16, 18, 19	_	Do not connect
VCC-	10	_	Power supply
VCC+	20	_	Power supply

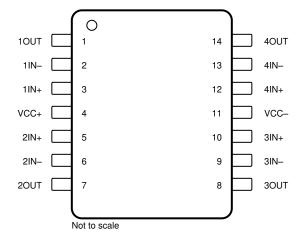


Figure 5-7. TL074x D, N, NS, PW, J, DYY, and W Package 14-Pin SOIC, PDIP, SO, TSSOP, CDIP, SOT-23 (14), and CFP Top View

Table 5-6. Pin Functions: TL074x

	PIN	- I/O	DESCRIPTION
NAME	NO.	1/0	DESCRIPTION
1IN-	2	I	Inverting input
1IN+	3	I	Noninverting input
10UT	1	0	Output
2IN-	6	I	Inverting input
2IN+	5	I	Noninverting input
2OUT	7	0	Output
3IN-	9	1	Inverting input
3IN+	10	I	Noninverting input
3OUT	8	0	Output
4IN-	13	I	Inverting input
4IN+	12	1	Noninverting input
4OUT	14	0	Output
V _{CC} -	11	_	Power supply
V _{CC+}	4	_	Power supply

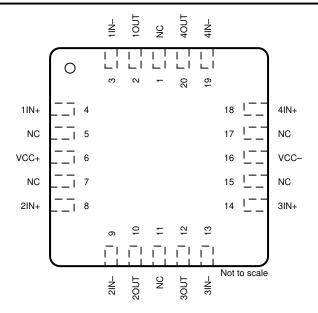


Figure 5-8. TL074 FK Package 20-Pin LCCC Top View

Table 5-7. Pin Functions: TL074x

F	PIN		Tuble 6 7.1 III Tulletione. TE674X
NAME	NO.	I/O	DESCRIPTION
1IN-	3	I	Inverting input
1IN+	4	I	Noninverting input
10UT	2	0	Output
2IN-	9	I	Inverting input
2IN+	8	I	Noninverting input
2OUT	10	0	Output
3IN-	13	I	Inverting input
3IN+	14	I	Noninverting input
3OUT	12	0	Output
4IN-	19	I	Inverting input
4IN+	18	I	Noninverting input
4OUT	20	0	Output
NC	1, 5, 7, 11, 15, 17	_	Do not connect
VCC-	16	_	Power supply
VCC+	6	_	Power supply

6 Specifications

6.1 Absolute Maximum Ratings: TL07xH

over operating ambient temperature range (unless otherwise noted) (1)

		MIN	MAX	UNIT		
Supply voltage, $V_S = (V_{CC+})$	- (V _{CC} -)	0	42	42 V		
	Common-mode voltage (3)	(V _{CC-}) - 0.5	(V _{CC+}) + 0.5	V		
Signal input pins	Differential voltage (3)		V _S + 0.2	V		
	Current (3)	-10	10	mA		
Output short-circuit (2)		Cont	tinuous			
Operating ambient temperature, T _A		-55	150	°C		
Junction temperature, T _J			150	°C		
Storage temperature, T _{stg}		-65	150	°C		

- (1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
- (2) Short-circuit to ground, one amplifier per package.
- (3) Input pins are diode-clamped to the power-supply rails. Input signals that may swing more than 0.5 V beyond the supply rails must be current limited to 10 mA or less.

6.2 Absolute Maximum Ratings: All Devices Except TL07xH

over operating free-air temperature range (unless otherwise noted) (1)

		MIN	MAX	UNIT
V _{CC+} - V _{CC-}	Supply voltage	-0.3	36	V
VI	Input voltage (3)	V _{CC} 0.3	V _{CC} - + 36	V
I _{IK}	Input clamp current		-50	mA
	Duration of output short circuit ⁽²⁾	Unlimited		
T _J	Operating virtual junction temperature		150	°C
	Case temperature for 60 seconds - FK package		260	°C
	Lead temperature 1.8 mm (1/16 inch) from case for 10 seconds		300	°C
T _{stg}	Storage temperature	-65	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.3 ESD Ratings: TL07xH

			VALUE	UNIT
V _(ESD) Electrostatic discharge	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±1500	V	
	Liectiostatic discharge	Charged device model (CDM), per JEDEC specification JESD22-C101 (2)	±1000	, '

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

⁽²⁾ The output may be shorted to ground or to either supply. Temperature and supply voltages must be limited to ensure that the dissipation rating is not exceeded.

⁽³⁾ Differential voltage only limited by input voltage.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.4 ESD Ratings: All Devices Except TL07xH

			VALUE	UNIT
		Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±2000	
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±1000	V

- (1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
- (2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.5 Recommended Operating Conditions: TL07xH

over operating ambient temperature range (unless otherwise noted)

		MIN	MAX	UNIT
Vs	Supply voltage, (V _{CC+}) – (V _{CC} –)	4.5	40	V
VI	Input voltage range	(V _{CC} -) + 2	$(V_{CC+}) + 0.1$	V
T _A	Specified temperature	-40	125	°C

6.6 Recommended Operating Conditions: All Devices Except TL07xH

over operating free-air temperature range (unless otherwise noted)

	-	·	MIN	MAX	UNIT	
V _{CC+}	Supply voltage ⁽¹⁾		5	15	V	
V _{CC} -	Supply voltage (1)		-5	-15	V	
V _{CM}	Common-mode voltage		V _{CC} + 4	V _{CC+}	V	
	Operating free-air temperature	TL07xM	-55	125	°C	
_		TL08xQ	-40	125		
A		TL07xI	-40	85		
		TL07xAC, TL07xBC, TL07xC	0	70		

⁽¹⁾ V_{CC+} and V_{CC-} are not required to be of equal magnitude, provided that the total V_{CC} ($V_{CC+} - V_{CC-}$) is between 10 V and 30 V.

6.7 Thermal Information for Single Channel: TL071H

			TL071H			
THERMAL METRIC (1)		D ⁽²⁾ (SOIC)	DCK ⁽²⁾ (SC70)	DBV ⁽²⁾ (SOT-23)	UNIT	
		8 PINS	5 PINS	5 PINS	1	
R _{0JA}	Junction-to-ambient thermal resistance	158.8	217.5	212.2	°C/W	
R _{0JC(top)}	Junction-to-case (top) thermal resistance	98.6	113.1	111.1	°C/W	
R _{0JB}	Junction-to-board thermal resistance	102.3	63.8	79.4	°C/W	
ΨЈТ	Junction-to-top characterization parameter	45.8	34.8	51.8	°C/W	
ΨЈВ	Junction-to-board characterization parameter	101.5	63.5	79.0	°C/W	
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	N/A	N/A	N/A	°C/W	

For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

⁽²⁾ This package option is preview for TL071H.

6.8 Thermal Information: TL071x

	THERMAL METRIC ⁽¹⁾	D (SOIC)	P (PDIP)	PS (SO)	UNIT
		8 PINS	8 PINS	8 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	97	85	95	°C/W
R _{0JC(top)}	Junction-to-case (top) thermal resistance	_	_	_	°C/W

⁽¹⁾ For more information about traditional and new thermal metrics, see the <u>Semiconductor and IC Package Thermal Metrics</u> application report.

6.9 Thermal Information for Dual Channel: TL072H

THERMAL METRIC (1)		D ⁽²⁾ (SOIC)	DDF ⁽²⁾ (SOT-23)	PW ⁽²⁾ (TSSOP)	UNIT
		8 PINS	8 PINS	8 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	147.8	181.5	200.3	°C/W
R _{0JC(top)}	Junction-to-case (top) thermal resistance	88.2	112.5	89.4	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	91.4	98.2	131.0	°C/W
ΨЈТ	Junction-to-top characterization parameter	36.8	17.2	22.2	°C/W
ΨЈВ	Junction-to-board characterization parameter	90.6	97.6	129.3	°C/W
R _{θJC(bot)}	Junction-to-case (bottom) thermal resistance	N/A	N/A	N/A	°C/W

For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

6.10 Thermal Information: TL072x

		TL072x				
	THERMAL METRIC ⁽¹⁾	D (SOIC)	JG (CDIP)	P (PDIP)	PS (SO)	UNIT
		8 PINS	8 PINS	8 PINS	8 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	97	_	85	95	°C/W
R _{θJC(top)}	Junction-to-case (top) thermal resistance	_	15.05	_	_	°C/W

⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

⁽²⁾ This package option is preview for TL072H.

6.11 Thermal Information: TL072x (cont.)

	THERMAL METRIC ⁽¹⁾	PW (TSSOP)	U (CFP)	FK (LCCC)	UNIT
		8 PINS	10 PINS	20 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	150	169.8	_	°C/W
R ₀ JC(top)	Junction-to-case (top) thermal resistance	_	62.1	5.61	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	_	176.2	_	°C/W
ΨЈТ	Junction-to-top characterization parameter	_	48.4	_	°C/W
ΨЈВ	Junction-to-board characterization parameter	_	144.1	_	°C/W
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	_	5.4	_	°C/W

For more information about traditional and new thermal metrics, see the <u>Semiconductor and IC Package Thermal Metrics</u> application report.

6.12 Thermal Information for Quad Channel: TL074H

THERMAL METRIC (1)					
		D (SOIC)	DYY ⁽²⁾ (SOT-23)	PW (TSSOP)	UNIT
		14 PINS	14 PINS	14 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	114.2	TBD	134.4	°C/W
R _{0JC(top)}	Junction-to-case (top) thermal resistance	70.3	TBD	62.6	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	70.2	TBD	77.6	°C/W
ΨЈТ	Junction-to-top characterization parameter	28.8	TBD	13.0	°C/W
ΨЈВ	Junction-to-board characterization parameter	69.8	TBD	77.0	°C/W
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	N/A	TBD	N/A	°C/W

For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

6.13 Thermal Information: TL074x

		TL074x			
	THERMAL METRIC ⁽¹⁾	D (SOIC)	N (PDIP)	NS (SO)	UNIT
		14 PINS	14 PINS	14 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	86	80	76	°C/W
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	_	_	_	°C/W

⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

⁽²⁾ This package option is preview for TL074H.

6.14 Thermal Information: TL074x (cont).

	THERMAL METRIC(1)	J (CDIP)	PW (TSSOP)	W (CFP)	UNIT
		14 PINS	14 PINS	14 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	_	113	128.8	°C/W
R _{0JC(top)}	Junction-to-case (top) thermal resistance	14.5	_	56.1	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	_	_	127.6	°C/W
ΨЈТ	Junction-to-top characterization parameter	_	_	29	°C/W
ΨЈВ	Junction-to-board characterization parameter	_	_	106.1	°C/W
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	_	_	0.5	°C/W

⁽¹⁾ For more information about traditional and new thermal metrics, see the <u>Semiconductor and IC Package Thermal Metrics</u> application report.

6.15 Thermal Information: TL074x (cont).

	THERMAL METRIC ⁽¹⁾	TL074x FK (LCCC) 20 PINS	UNIT
$R_{\theta JA}$	Junction-to-ambient thermal resistance	_	°C/W
R _{0JC(top)}	Junction-to-case (top) thermal resistance	5.61	°C/W

For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

6.16 Thermal Information

• • • • •													
			TL071/TL072/TL074										
THERMAL METRIC(1)		D (S	OIC)	FK (LCCC)	J (C	DIP)	N (P	DIP)	NS	(SO)	PW (T	SSOP)	UNIT
		8 PINS	14 PINS	20 PINS	8 PINS	14 PINS	8 PINS	14 PINS	8 PINS	14 PINS	8 PINS	14 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	97	86	_	_	_	85	80	95	76	150	113	°C/W
R _{θJC(top)}	Junction-to-case (top) thermal resistance	_	_	5.61	15.05	14.5	_	_	_	_	_	_	°C/W

⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

6.17 Electrical Characteristics: TL07xH

For V_S = (V_{CC+}) – (V_{CC-}) = 4.5 V to 40 V (±2.25 V to ±20 V) at T_A = 25°C, R_L = 10 k Ω connected to V_S / 2, V_{CM} = V_S / 2, and $V_{O\ UT}$ = V_S / 2, unless otherwise noted.

v	PARAMETER		NOTIONS	MINI	TVD	MAY	LINUT
	PARAMETER	TEST CO	NDITIONS	MIN	ТҮР	MAX	UNIT
OFFSET V	OLTAGE	T					
V _{OS}	Input offset voltage				±1	±4	mV
			$T_A = -40^{\circ}\text{C to } 125^{\circ}\text{C}$			±5	1400
dV _{OS} /dT	Input offset voltage drift		$T_A = -40^{\circ}C \text{ to } 125^{\circ}C$		±2		μV/°C
PSRR	Input offset voltage versus power supply	$V_{S} = 5 \text{ V to } 40 \text{ V, } V_{CM} = V_{S} / 2$	$T_A = -40^{\circ}C \text{ to } 125^{\circ}C$		±1	±10	μV/V
	Channel separation	f = 0 Hz			10		μV/V
INPUT BIA	S CURRENT						
					±1	±120	pА
I _B	Input bias current		DCK and DBV packages		±1	±300	pА
			$T_A = -40^{\circ}\text{C to } 125^{\circ}\text{C}$ (1)			±5	nA
					±0.5	±120	pA
Ios	Input offset current		DCK and DBV packages		±0.5	±250	pA
			$T_A = -40^{\circ}\text{C to } 125^{\circ}\text{C}$ (1)			±5	nA
NOISE							
					9.2		μV _{PP}
E _N	Input voltage noise	f = 0.1 Hz to 10 Hz			1.4		μV _{RMS}
		f = 1 kHz			37	+	F*RIVIS
e _N	Input voltage noise density	f = 10 kHz			21		nV/√ Hz
:	Input current noise	f = 1 kHz			80		fA/√ Hz
INDUT VOI	LTAGE RANGE	I - I KHZ					IAV VIIZ
INPUT VOL							
V _{CM}	Common-mode voltage range			(V _{CC} _) + 1.5		(V _{CC+})	V
CMRR	Common-mode rejection ratio	V _S = 40 V, (V _{CC}) + 2.5 V <		100	105		dB
CMRR	Common-mode rejection ratio	V _{CM} < (V _{CC+}) – 1.5 V	$T_A = -40^{\circ}C \text{ to } 125^{\circ}C$	95			dB
CMRR	Common-mode rejection ratio	V _S = 40 V, (V _{CC}) + 2.5 V <		90	105		dB
CMRR	Common-mode rejection ratio	$V_{CM} < (V_{CC+})$	$T_A = -40^{\circ}\text{C to } 125^{\circ}\text{C}$	80			dB
INPUT CA	PACITANCE						
Z _{ID}	Differential				100 2		MΩ pF
Z _{ICM}	Common-mode				6 1		TΩ pF
OPEN-LOC	OP GAIN			1			
A _{OL}	Open-loop voltage gain	V _S = 40 V, V _{CM} = V _S / 2, (V _{CC} -) + 0.3 V < V _O < (V _{CC} +) - 0.3 V	T _A = -40°C to 125°C	118	125		dB
A _{OL}	Open-loop voltage gain	$V_S = 40 \text{ V}, V_{CM} = V_S / 2, R_L = 2 \text{ k}\Omega, (V_{CC-}) + 1.2 \text{ V} < V_O < (V_{CC+}) - 1.2 \text{ V}$	T _A = -40°C to 125°C	115	120		dB
FREQUEN	CY RESPONSE		1	1			
GBW	Gain-bandwidth product				5.25		MHz
SR	Slew rate	V _S = 40 V, G = +1, C _L = 20 pF	:		20	+	V/µs
		To 0.1%, $V_S = 40 \text{ V}$, $V_{STEP} = 1$			0.63	+	-1
		To 0.1%, $V_S = 40 \text{ V}$, $V_{STEP} = 2$			0.56		
t _S	Settling time				0.91		μs
		To 0.01%, $V_S = 40 \text{ V}$, $V_{STEP} =$			0.48		
	Phone margin					+	0
	Phase margin	$G = +1, R_L = 10k\Omega, C_L = 20 pl$	I		56		
	Overload recovery time	V _{IN} × gain > V _S			300		ns

6.17 Electrical Characteristics: TL07xH (continued)

For V_S = (V_{CC+}) – (V_{CC-}) = 4.5 V to 40 V (±2.25 V to ±20 V) at T_A = 25°C, R_L = 10 k Ω connected to V_S / 2, V_{CM} = V_S / 2, and $V_{O\ UT}$ = V_S / 2, unless otherwise noted.

	PARAMETER	TEST (CONDITIONS	MIN	TYP	MAX	UNIT
THD+N	Total harmonic distortion + noise	V _S = 40 V, V _O = 6 V _{RMS} , G	= +1, f = 1 kHz		0.00012		%
EMIRR	EMI rejection ratio	f = 1 GHz			53		dB
OUTPUT							
		Positive rail headroom	$V_S = 40 \text{ V}, R_L = 10 \text{ k}\Omega$		115	210	
	Voltage output swing from	Positive rail neadroom	$V_S = 40 \text{ V}, R_L = 2 \text{ k}\Omega$		520	965	>/
	rail	No motives well be a decom-	$V_S = 40 \text{ V}, R_L = 10 \text{ k}\Omega$		105	215	mV
		Negative rail headroom	$V_S = 40 \text{ V}, R_L = 2 \text{ k}\Omega$		500	1030	
I _{SC}	Short-circuit current				±26		mA
C _{LOAD}	Capacitive load drive				300		pF
Z _O	Open-loop output impedance	f = 1 MHz, I _O = 0 A			125		Ω
POWER S	SUPPLY						
		I _O = 0 A			937.5	1125	
	Quiescent current per	I _O = 0 A, (TL071H)			960	1156	
IQ	r.c	I _O = 0 A	T = 40°C to 405°C			1130	μA
		I _O = 0 A, (TL071H)	$T_A = -40^{\circ}\text{C to } 125^{\circ}\text{C}$			1160	1
	Turn-On Time	At T _A = 25°C, V _S = 40 V, V _S	s ramp rate > 0.3 V/µs		60		μs

⁽¹⁾ Max I_{B} and I_{os} data is specified based on characterization results.

6.18 Electrical Characteristics: TL071C, TL072C, TL074C

- CCT = 1	PARAMETER	TEST CO	ONDITIONS (1) (2)	MIN	TYP	MAX	UNIT
V	Innut offset voltage	V _O = 0	T _A = 25°C		3	10	m\/
V _{IO}	Input offset voltage	R _S = 50 Ω	T _A = Full range			13	mV
α	Temperature coefficient of input offset voltage	$V_O = 0$ $R_S = 50 \Omega$	T _A = Full range		18		μV/°C
	land the effect of a command	V = 0	T _A = 25°C		5	100	pА
I _{IO}	Input offset current	V _O = 0	T _A = Full range			10	nA
	Innut bigg gurrant (3)	V = 0	T _A = 25°C		65	200	pА
I _{IB}	Input bias current (3)	V _O = 0	T _A = Full range			7	nA
V _{ICR}	Common-mode input voltage range	T _A = 25°C		±11	–12 to 15		V
		R _L = 10 kΩ	T _A = 25°C	±12	±13.5		
V _{OM}	Maximum peak output voltage swing	R _L ≥ 10 kΩ	T - Full years	±12			V
	voltage swing	R _L ≥ 2 kΩ	T _A = Full range	±10			
	Large-signal differential	V _O = ±10 V	T _A = 25°C	25	200		\
A _{VD}	voltage amplification	R _L ≥ 2 kΩ	T _A = Full range	15			V/mV
B ₁	Utility-gain bandwidth	T _A = 25°C			3		MHz
rı	Input resistance	T _A = 25°C			10 ¹²		Ω
CMRR	Common-mode rejection ratio	$V_{IC} = V_{ICR(min)}$ $V_{O} = 0$ $R_{S} = 50 \Omega$	T _A = 25°C	70	100		dB
k _{SVR}	Supply voltage rejection ratio $(\Delta V_{CC\pm}/\Delta V_{IO})$	$V_{CC} = \pm 9 \text{ V to } \pm 15 \text{ V}$ $V_{O} = 0$ $R_{S} = 50 \Omega$	T _A = 25°C	70	100		dB
Icc	Supply current (each amplifier)	V _O = 0; no load	T _A = 25°C		1.4	2.5	mA
V _{O1} / V _{O2}	Crosstalk attenuation	A _{VD} = 100	T _A = 25°C		120		dB

⁽¹⁾ All characteristics are measured under open-loop conditions with zero common-mode voltage, unless otherwise specified.

²⁾ Full range is $T_A = 0$ °C to 70°C.

⁽³⁾ Input bias currents of an FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive, as shown in Input Bias Current vs Free-Air Temperature. Pulse techniques must be used that maintain the junction temperature as close to the ambient temperature as possible.

6.19 Electrical Characteristics: TL071AC, TL072AC, TL074AC

 $V_{CC\pm}$ = ±15 V (unless otherwise noted)

VCC± =	PARAMETER	TEST CO	NDITIONS (1) (2)	MIN	TYP	MAX	UNIT
V	Input offset voltage	V _O = 0	T _A = 25°C		3	6	mV
V_{IO}	input onset voitage	$R_S = 50 \Omega$	T _A = Full range			7.5	IIIV
α	Temperature coefficient of input offset voltage	$V_O = 0$ $R_S = 50 \Omega$	T _A = Full range		18		μV/°C
	Input offset current	V _O = 0	T _A = 25°C		5	100	pA
I _{IO}	input onset current	V _O = 0	T _A = Full range			2	nA
	Input bias current (3)	V = 0	T _A = 25°C		65	200	pА
I _{IB}	input bias current (4)	V _O = 0	T _A = Full range			7	nA
V _{ICR}	Common-mode input voltage range	T _A = 25°C		±11	–12 to 15		V
		R _L = 10 kΩ	T _A = 25°C	±12	±13.5		
V_{OM}	Maximum peak output voltage swing	R _L ≥ 10 kΩ	T - Full remains	±12			V
	voltage ownig	R _L ≥ 2 kΩ	T _A = Full range	±10			
^	Large-signal differential	V _O = ±10 V	T _A = 25°C	50	200		V/mV
A_{VD}	voltage amplification	R _L ≥ 2 kΩ	T _A = Full range	25			V/mV
B ₁	Utility-gain bandwidth	T _A = 25°C			3		MHz
r _l	Input resistance	T _A = 25°C			10 ¹²		Ω
CMRR	Common-mode rejection ratio	$V_{IC} = V_{ICR(min)}$ $V_{O} = 0$ $R_{S} = 50 \Omega$	T _A = 25°C	75	100		dB
k _{SVR}	Supply-voltage rejection ratio $(\Delta V_{CC\pm} / \Delta V_{IO})$	$V_{CC} = \pm 9 \text{ V to } \pm 15 \text{ V}$ $V_{O} = 0$ $R_{S} = 50 \Omega$	T _A = 25°C	80	100		dB
I _{CC}	Supply current (each amplifier)	V _O = 0; no load	T _A = 25°C		1.4	2.5	mA
V _{O1} / V _{O2}	Crosstalk attenuation	A _{VD} = 100	T _A = 25°C		120		dB

⁽¹⁾ All characteristics are measured under open-loop conditions with zero common-mode voltage, unless otherwise specified.

⁽²⁾ Full range is $T_A = 0^{\circ}C$ to $70^{\circ}C$.

⁽³⁾ Input bias currents of an FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive, as shown in Input Bias Current vs Free-Air Temperature. Pulse techniques must be used that maintain the junction temperature as close to the ambient temperature as possible.

6.20 Electrical Characteristics: TL071BC, TL072BC, TL074BC

 $V_{CC\pm}$ = ±15 V (unless otherwise noted)

	PARAMETER	TEST CO	NDITIONS (1) (2)	MIN	TYP	MAX	UNIT
V	Input offset voltage	V _O = 0	T _A = 25°C		2	3	mV
V _{IO}	input onset voltage	$R_S = 50 \Omega$	T _A = Full range			5	IIIV
α	Temperature coefficient of input offset voltage	V _O = 0 R _S = 50 Ω	T _A = Full range		18		μV/°C
	Innut offeet current	V = 0	T _A = 25°C		5	100	pА
I _{IO}	Input offset current	V _O = 0	T _A = Full range			2	nA
	Input bigg gurrent (3)	V = 0	T _A = 25°C		65	200	pА
I _{IB}	Input bias current (3)	V _O = 0	T _A = Full range			7	nA
V _{ICR}	Common-mode input voltage range	T _A = 25°C		±11	–12 to 15		V
		R _L = 10 kΩ	T _A = 25°C	±12	±13.5		
V _{OM}	Maximum peak output voltage swing	R _L ≥ 10 kΩ	T - Full remain	±12			V
	voltage 5Wing	R _L ≥ 2 kΩ	T _A = Full range	±10			
_	Large-signal differential	V _O = ±10 V	T _A = 25°C	50	200		V/mV
A_{VD}	voltage amplification	R _L ≥ 2 kΩ	T _A = Full range	25			V/IIIV
B ₁	Utility-gain bandwidth	T _A = 25°C			3		MHz
rı	Input resistance	T _A = 25°C			10 ¹²		Ω
CMRR	Common-mode rejection ratio	$V_{IC} = V_{ICR(min)}$ $V_{O} = 0$ $R_{S} = 50 \Omega$	T _A = 25°C	75	100		dB
k _{SVR}	Supply-voltage rejection ratio $(\Delta V_{CC\pm}/\Delta V_{IO})$	$V_{CC} = \pm 9 \text{ V to } \pm 15 \text{ V}$ $V_{O} = 0$ $R_{S} = 50 \Omega$	T _A = 25°C	80	100		dB
I _{CC}	Supply current (each amplifier)	V _O = 0; no load	T _A = 25°C		1.4	2.5	mA
V _{O1} / V _{O2}	Crosstalk attenuation	A _{VD} = 100	T _A = 25°C		120		dB

⁽¹⁾ All characteristics are measured under open-loop conditions with zero common-mode voltage, unless otherwise specified.

²⁾ Full range is $T_A = 0$ °C to 70°C.

⁽³⁾ Input bias currents of an FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive, as shown in Input Bias Current vs Free-Air Temperature. Pulse techniques must be used that maintain the junction temperature as close to the ambient temperature as possible.

6.21 Electrical Characteristics: TL071I, TL072I, TL074I

VCC± =:	PARAMETER	TEST CON	DITIONS (1) (2)	MIN	TYP	MAX	UNIT
V	Input offset voltage	V _O = 0	T _A = 25°C		3	6	mV
V_{IO}	iliput oliset voltage	$R_S = 50 \Omega$	T _A = Full range			8	IIIV
α	Temperature coefficient of input offset voltage	$V_O = 0$ $R_S = 50 \Omega$	T _A = Full range		18		μV/°C
	Input offset current	V _O = 0	T _A = 25°C		5	100	pA
I _{IO}	input onset current	V _O = 0	T _A = Full range			2	nA
	Input bias current (3)	V _O = 0	T _A = 25°C		65	200	pА
I _{IB}	input bias current (9)	V _O – 0	T _A = Full range			7	nA
V _{ICR}	Common-mode input voltage range	T _A = 25°C	,	±11	–12 to 15		٧
		R _L = 10 kΩ	T _A = 25°C	±12	±13.5		
V _{OM}	Maximum peak output voltage swing	R _L ≥ 10 kΩ	T - Full reserve	±12			V
	Voltage Swing	$R_L \ge 2 k\Omega$	T _A = Full range	±10			
^	Large-signal differential	V _O = ±10 V	T _A = 25°C	50	200		V/mV
A _{VD}	voltage amplification	$R_L \ge 2 k\Omega$	T _A = Full range	25			V/mV
B ₁	Utility-gain bandwidth	T _A = 25°C	'		3		MHz
rı	Input resistance	T _A = 25°C			10 ¹²		Ω
CMRR	Common-mode rejection ratio	$V_{IC} = V_{ICR(min)}$ $V_{O} = 0$ $R_{S} = 50 \Omega$	T _A = 25°C	75	100		dB
k _{SVR}	Supply-voltage rejection ratio (ΔV _{CC±} /ΔV _{IO})	$V_{CC} = \pm 9 \text{ V to } \pm 15 \text{ V}$ $V_{O} = 0$ $R_{S} = 50 \Omega$	T _A = 25°C	80	100		dB
I _{CC}	Supply current (each amplifier)	V _O = 0; no load	T _A = 25°C		1.4	2.5	mA
V _{O1} / V _{O2}	Crosstalk attenuation	A _{VD} = 100	T _A = 25°C		120		dB

⁽¹⁾ All characteristics are measured under open-loop conditions with zero common-mode voltage, unless otherwise specified.

⁽²⁾ $T_A = -40^{\circ}C \text{ to } 85^{\circ}C.$

⁽³⁾ Input bias currents of an FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive, as shown in Input Bias Current vs Free-Air Temperature. Pulse techniques must be used that maintain the junction temperature as close to the ambient temperature as possible.

6.22 Electrical Characteristics: TL071M, TL072M

-661 = 11	PARAMETER	TEST CON	DITIONS (1) (2)	MIN	TYP	MAX	UNIT
.,	land the affect of the sec	V _O = 0	T _A = 25°C		3	6	\/
V_{IO}	Input offset voltage	$R_S = 50 \Omega$	T _A = Full range			9	mV
α_{VIO}	Temperature coefficient of input offset voltage	V _O = 0 R _S = 50 Ω	T _A = Full range		18		μV/°C
	Input affact ourrent	V = 0	T _A = 25°C		5	100	pА
I _{IO}	Input offset current	V _O = 0	T _A = Full range			20	nA
	Incore him a command	V - 0	T _A = 25°C		65	200	pА
I _{IB}	Input bias current	V _O = 0	T _A = Full range			50	nA
V _{ICR}	Common-mode input voltage range	T _A = 25°C		±11 -	-12 to 15		٧
		R _L = 10 kΩ	T _A = 25°C	±12	±13.5		
V _{OM}	Maximum peak output voltage swing	R _L ≥ 10 kΩ	T. F. II	±12			V
	voltage swing	R _L ≥ 2 kΩ	T _A = Full range	±10			
^	Large-signal differential	V _O = ±10 V	T _A = 25°C	35	200		\
A_{VD}	voltage amplification	$R_L \ge 2 k\Omega$	T _A = Full range	15			V/mV
B ₁	Unity-gain bandwidth		<u> </u>		3		MHz
rį	Input resistance				10 ¹²		Ω
CMRR	Common-mode rejection ratio	$V_{IC} = V_{ICR(min)},$ $V_{O} = 0$ $R_{S} = 50 \Omega$	T _A = 25°C	80	86		dB
k _{SVR}	Supply-voltage rejection ratio ($\Delta V_{CC\pm}/\Delta V_{IO}$)	$V_{CC} = \pm 9 \text{ V to } \pm 15 \text{ V}$ $V_{O} = 0$ $R_{S} = 50 \Omega$	T _A = 25°C	80	86		dB
Icc	Supply current (each amplifier)	V _O = 0; no load	T _A = 25°C		1.4	2.5	mA
V _{O1} / V _{O2}	Crosstalk attenuation	A _{VD} = 100	T _A = 25°C		120		dB

⁽¹⁾ Input bias currents of an FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive, as shown in Input Bias Current vs Free-Air Temperature. Pulse techniques that maintain the junction temperature as close to the ambient temperature as possible must be used.

⁽²⁾ All characteristics are measured under open-loop conditions with zero common-mode voltage, unless otherwise specified. Full range is $T_A = -55$ °C to +125°C.

6.23 Electrical Characteristics: TL074M

	PARAMETER	TEST CON	DITIONS (1) (2)	MIN	TYP	MAX	UNIT
\/	Innut offeet veltere	V _O = 0	T _A = 25°C		3	9	m)/
V _{IO}	Input offset voltage	$R_S = 50 \Omega$	T _A = Full range			15	mV
α_{VIO}	Temperature coefficient of input offset voltage	$V_{O} = 0, R_{S} = 50 \Omega$	T _A = Full range		18		μV/°C
	Innut offeet ourrent	V = 0	T _A = 25°C		5	100	pА
I _{IO}	Input offset current	V _O = 0	T _A = Full range			20	nA
	Innut bigg gurrant	V = 0	T _A = 25°C		65	200	pA
I _{IB}	Input bias current	V _O = 0	T _A = Full range			20	nA
V _{ICR}	Common-mode input voltage range	T _A = 25°C		±11	-12 to 15		V
		$R_L = 10 \text{ k}\Omega$	T _A = 25°C	±12	±13.5		
V _{OM}	Maximum peak output voltage swing	R _L ≥ 10 kΩ	T	±12			V
	voltage swilig	R _L ≥ 2 kΩ	T _A = Full range	±10			
_	Large-signal differential	V _O = ±10 V	T _A = 25°C	35	200		Mark
A _{VD}	voltage amplification	R _L ≥ 2 kΩ	T _A = Full range	15			V/mV
B ₁	Unity-gain bandwidth				3		MHz
ri	Input resistance				10 ¹²		Ω
CMRR	Common-mode rejection ratio	$V_{IC} = V_{ICR(min)}$ $V_{O} = 0$ $R_{S} = 50 \Omega$	T _A = 25°C	80	86		dB
k _{SVR}	Supply-voltage rejection ratio ($\Delta V_{CC2}/\Delta V_{IO}$)	V_{CC} = ±9 V to ±15 V V_{O} = 0 R_{S} = 50 Ω	T _A = 25°C	80	86		dB
Icc	Supply current (each amplifier)	V _O = 0; no load	T _A = 25°C		1.4	2.5	mA
V _{O1} / V _{O2}	Crosstalk attenuation	A _{VD} = 100	T _A = 25°C		120		dB

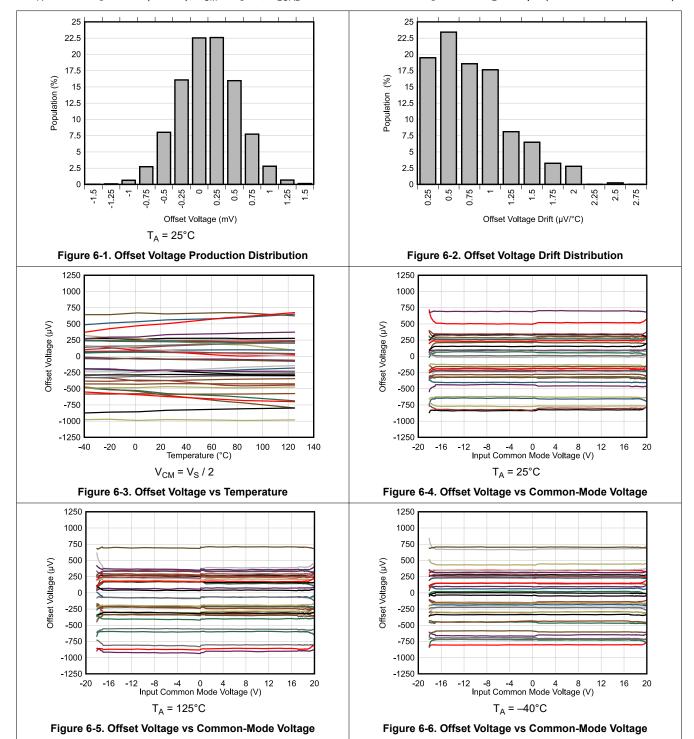
⁽¹⁾ Input bias currents of an FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive, as shown in Input Bias Current vs Free-Air Temperature. Pulse techniques that maintain the junction temperature as close to the ambient temperature as possible must be used.

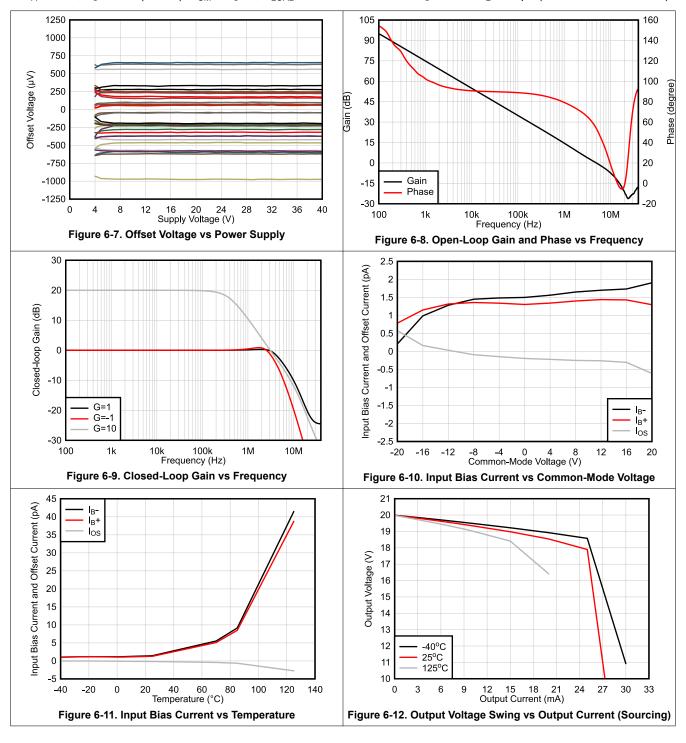
⁽²⁾ All characteristics are measured under open-loop conditions with zero common-mode voltage, unless otherwise specified. Full range is $T_A = -55$ °C to +125°C.

6.24 Switching Characteristics: TL07xM

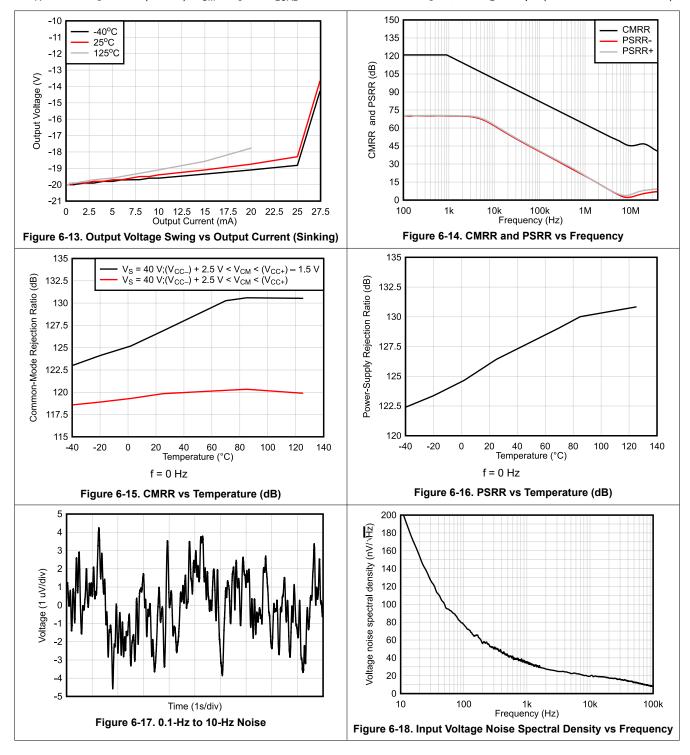
 $V_{CC\pm}$ = ±15 V, T_A = 25°C

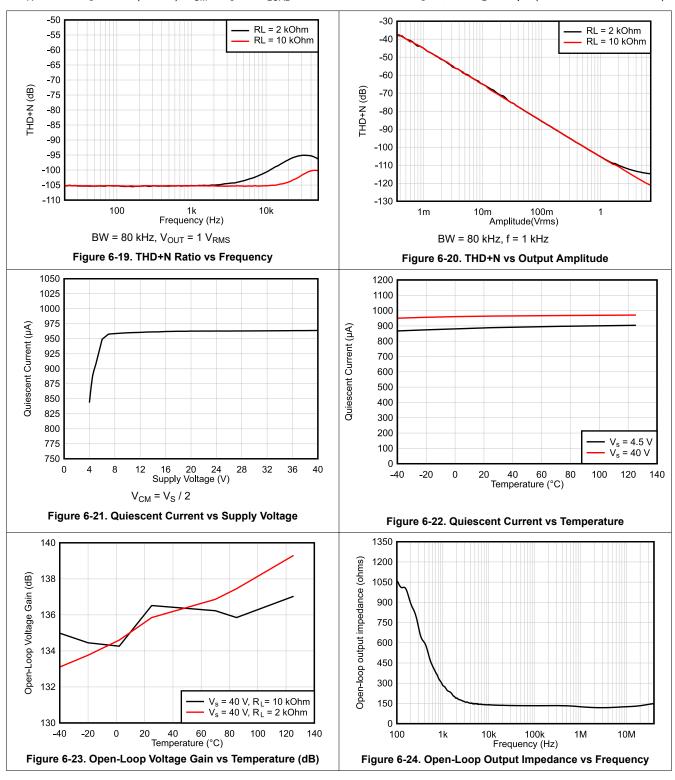
	PARAMETER	TEST CONDI	MIN	TYP	MAX	UNIT	
SR	Slew rate at unity gain	V _I = 10 V C _L = 100 pF	R_L = 2 kΩ See Figure 7-1	5	13		V/µs
	Rise-time overshoot factor	V _I = 20 V C _L = 100 pF	$R_L = 2 k\Omega$		0.1		μs
l _r	Nise-time overshoot factor	C _L = 100 pF	See Figure 7-1		20%		
V	Caulyalant innut naisa valtaga	D = 20 O	f = 1 kHz	-	18		nV/√ Hz
V _n	Equivalent input noise voltage	R _S = 20 12	f = 10 Hz to 10 kHz		4		μV
In	Equivalent input noise current	R _S = 20 Ω	f = 1 kHz		0.01		pA/√ Hz
THD	Total harmonic distortion	V_{l} rms = 6 V $R_{L} \ge 2 k\Omega$ f = 1 kHz	A _{VD} = 1 RS ≤ 1 kΩ		0.003%		

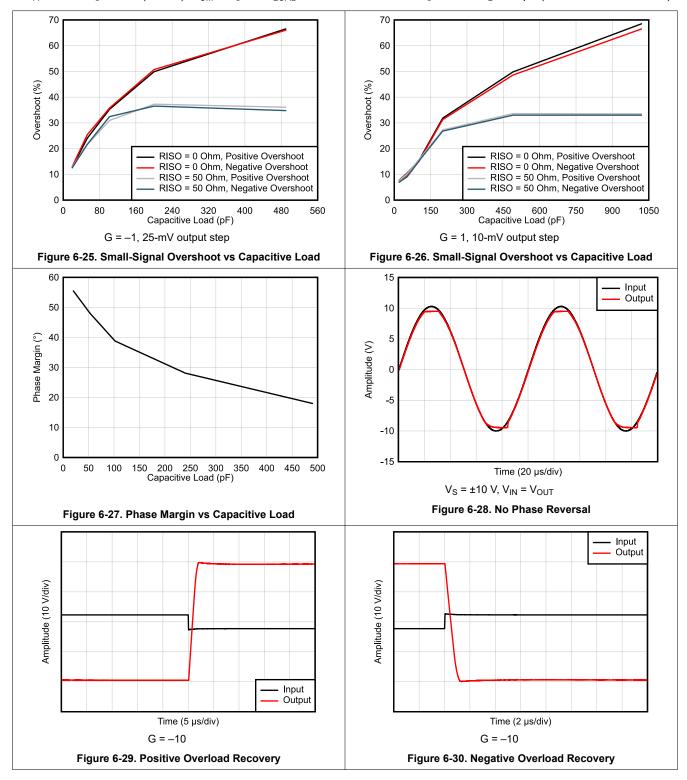

6.25 Switching Characteristics: TL07xC, TL07xAC, TL07xBC, TL07xI

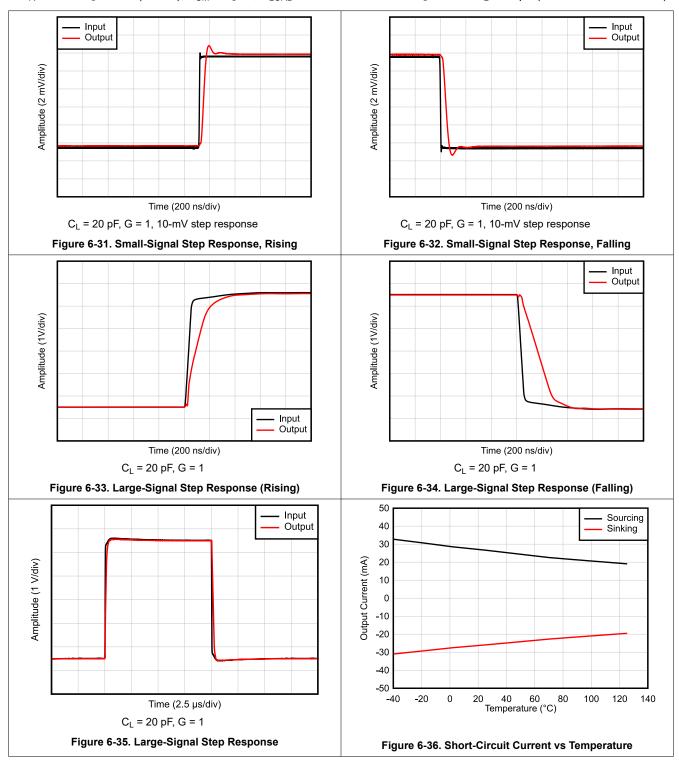

 $V_{CC\pm}$ = ±15 V, T_A = 25°C

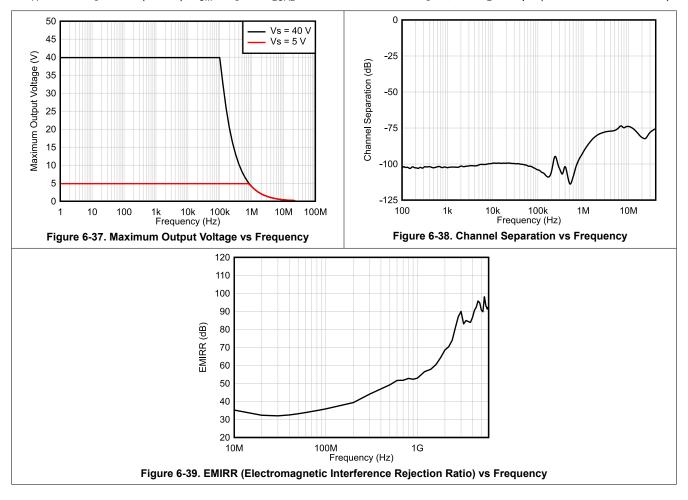
PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
SR	Slew rate at unity gain	V _I = 10 V C _L = 100 pF	$R_L = 2 k\Omega$ See Figure 7-1	8	13		V/µs
t _r	Rise-time overshoot factor	V _I = 20 V C _L = 100 pF	$R_L = 2 k\Omega$ See Figure 7-1		0.1		μs
					20%		
V _n	Equivalent input noise voltage	R _S = 20 Ω	f = 1 kHz		18		nV/√ Hz
			f = 10 Hz to 10 kHz		4		μV
In	Equivalent input noise current	R _S = 20 Ω	f = 1 kHz		0.01		pA/√ Hz
THD	Total harmonic distortion	V_{l} rms = 6 V $R_{L} \ge 2 k\Omega$ f = 1 kHz	A _{VD} = 1 RS ≤ 1 kΩ		0.003%		

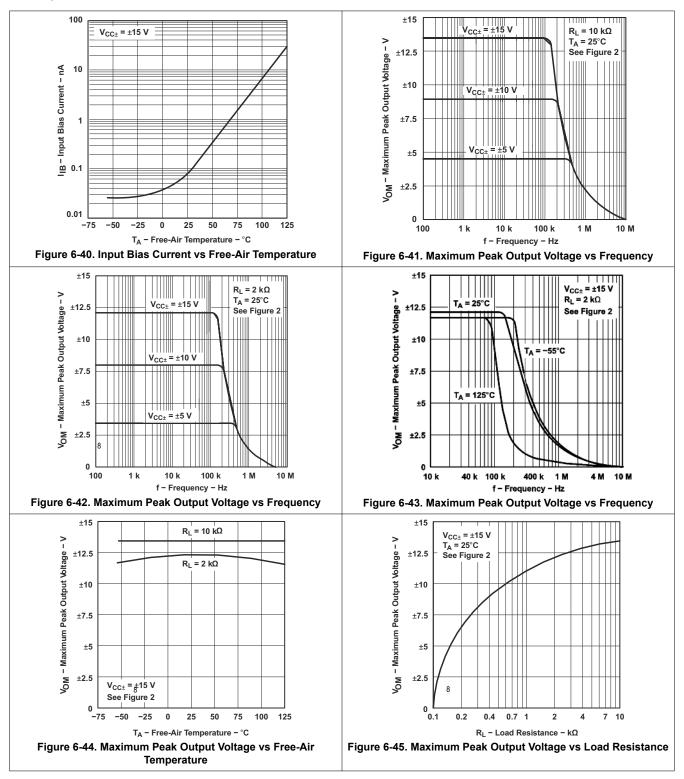


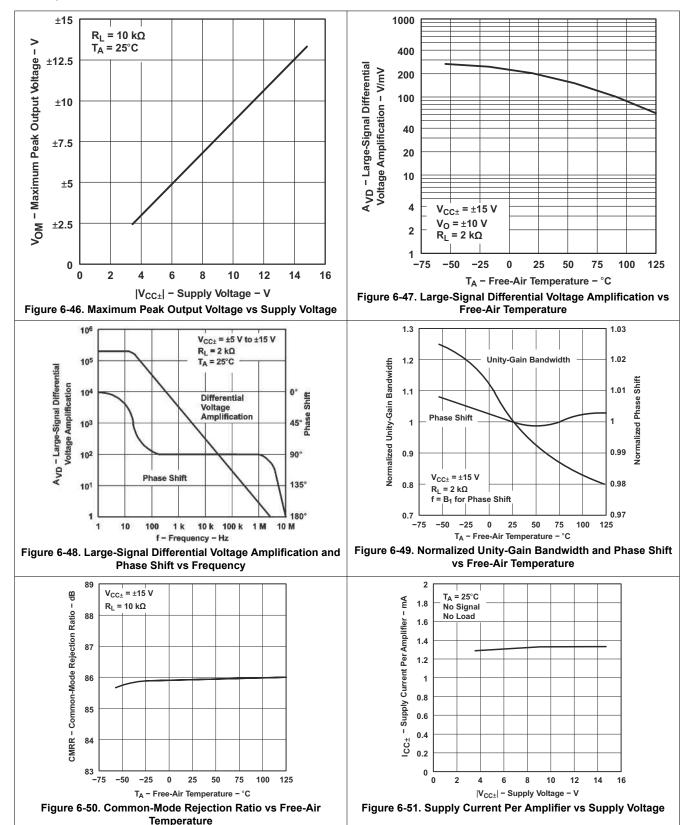

6.26 Typical Characteristics: TL07xH











6.27 Typical Characteristics: All Devices Except TL07xH

6.27 Typical Characteristics: All Devices Except TL07xH (continued)

V_{CC±} =±15 V

No Signal No Load

TL074

75

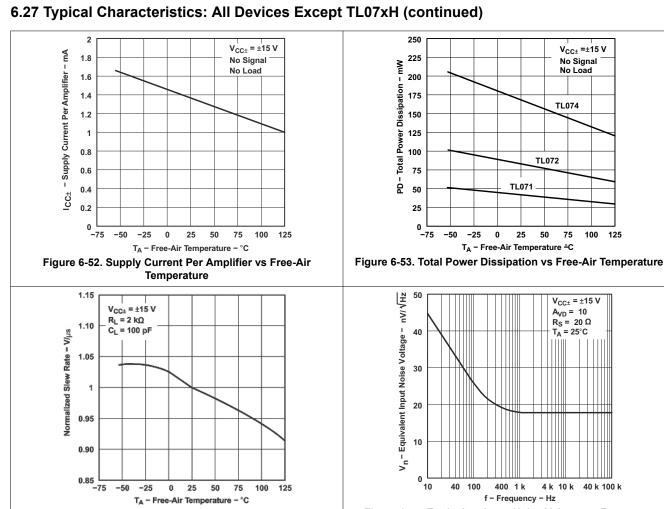
 $V_{CC\pm} = \pm 15 \text{ V}$

 $A_{VD} = 10$

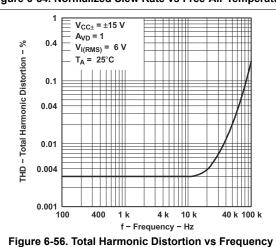
R_S = 20 Ω

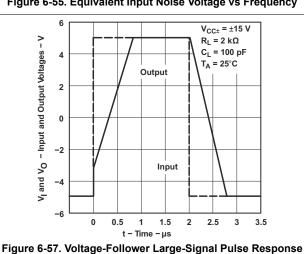
 $T_A = 25^{\circ}C$

40 k 100 k

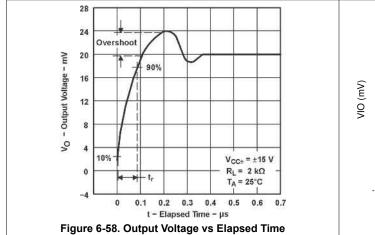

TL072

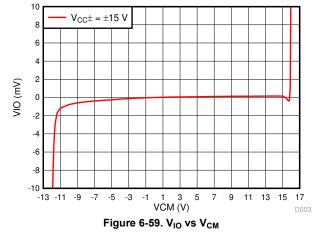
TL071


T_A - Free-Air Temperature °C


0 25

6.27 Typical Characteristics: All Devices Except TL07xH (continued)





6.27 Typical Characteristics: All Devices Except TL07xH (continued)

7 Parameter Measurement Information

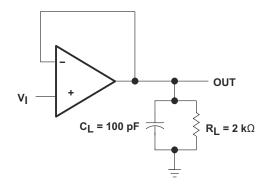


Figure 7-1. Unity-Gain Amplifier

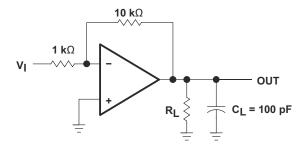


Figure 7-2. Gain-of-10 Inverting Amplifier

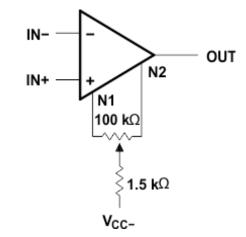
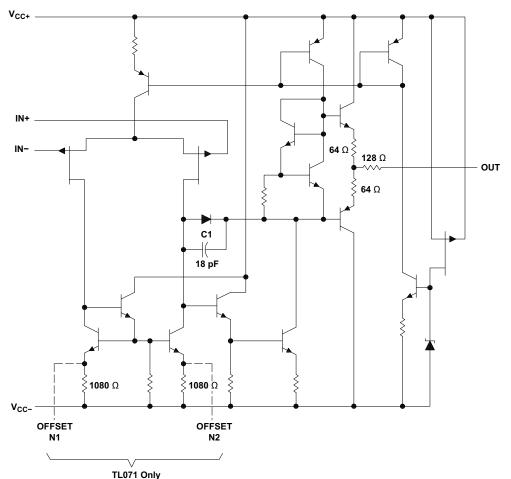


Figure 7-3. Input Offset-Voltage Null Circuit


8 Detailed Description

8.1 Overview

The TL07xH (TL071H, TL072H, and TL074H) family of devices are the next-generation versions of the industry-standard TL07x (TL071, TL072, and TL074) devices. These devices provide outstanding value for cost-sensitive applications, with features including low offset (1 mV, typ), high slew rate (25 V/µs, typ), and common-mode input to the positive supply. High ESD (1.5 kV, HBM), integrated EMI and RF filters, and operation across the full –40°C to 125°C enable the TL07xH devices to be used in the most rugged and demanding applications.

The C-suffix devices are characterized for operation from 0° C to 70° C. The I-suffix devices are characterized for operation from -40° C to $+85^{\circ}$ C. The M-suffix devices are characterized for operation over the full military temperature range of -55° C to $+125^{\circ}$ C.

8.2 Functional Block Diagram

All component values shown are nominal.

сом	PONENT C	OUNT									
COMPONENT TYPE	TI 071 TI 072 TI 074										
Resistors	11	22	44								
Transistors	14	28	56								
JFET	2	4	6								
Diodes	1	2	4								
Capacitors	1	2	4								
epi-FET	1	2	4								

[†] Includes bias and trim circuitry

8.3 Feature Description

The TL07xH family of devices improve many specifications as compared to the industry-standard TL07x family. Several comparisons of key specifications between these families are included below to show the advantages of the TL07xH family.

8.3.1 Total Harmonic Distortion

Harmonic distortions to an audio signal are created by electronic components in a circuit. Total harmonic distortion (THD) is a measure of harmonic distortions accumulated by a signal in an audio system. These devices have a very low THD of 0.003% meaning that the TL07x device adds little harmonic distortion when used in audio signal applications.

8.3.2 Slew Rate

The slew rate is the rate at which an operational amplifier can change the output when there is a change on the input. These devices have a $13-V/\mu s$ slew rate.

8.4 Device Functional Modes

These devices are powered on when the supply is connected. These devices can be operated as a single-supply operational amplifier or dual-supply amplifier depending on the application.

9 Application and Implementation

Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

9.1 Application Information

A typical application for an operational amplifier is an inverting amplifier. This amplifier takes a positive voltage on the input, and makes the voltage a negative voltage. In the same manner, the amplifier makes negative voltages positive.

9.2 Typical Application

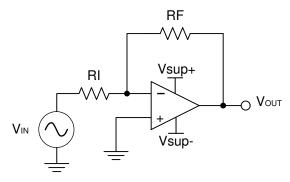


Figure 9-1. Inverting Amplifier

9.2.1 Design Requirements

The supply voltage must be selected so the supply voltage is larger than the input voltage range and output range. For instance, this application scales a signal of ± 0.5 V to ± 1.8 V. Setting the supply at ± 12 V is sufficient to accommodate this application.

9.2.2 Detailed Design Procedure

$$V_o = (V_i + V_{io})^* \left(1 + \frac{1M\Omega}{1k\Omega}\right)$$
 (1)

Determine the gain required by the inverting amplifier:

$$A_{V} = \frac{VOUT}{VIN}$$
 (2)

$$A_V = \frac{1.8}{-0.5} = -3.6 \tag{3}$$

Once the desired gain is determined, select a value for RI or RF. Selecting a value in the kilohm range is desirable because the amplifier circuit uses currents in the milliamp range. This ensures the part does not draw too much current. This example uses 10 k Ω for RI which means 36 k Ω is used for RF. This is determined by Equation 4.

$$A_{V} = -\frac{RF}{RI} \tag{4}$$

9.2.3 Application Curve

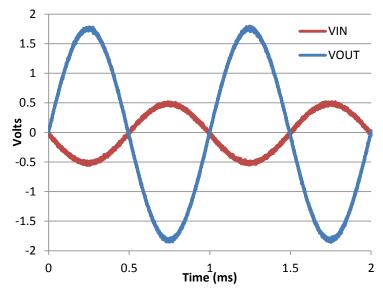


Figure 9-2. Input and Output Voltages of the Inverting Amplifier

9.3 Unity Gain Buffer

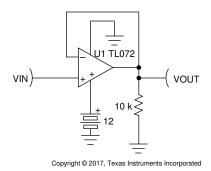
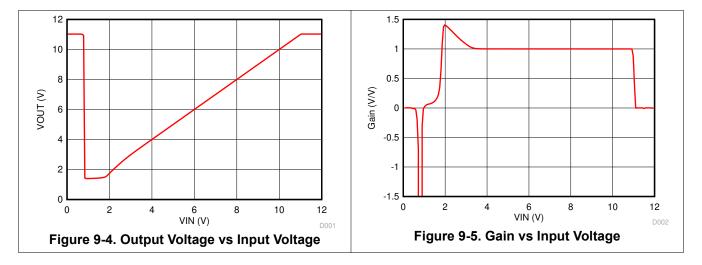


Figure 9-3. Single-Supply Unity Gain Amplifier

9.3.1 Design Requirements


- V_{CC} must be within valid range per Section 6.6. This example uses a value of 12 V for V_{CC}.
- Input voltage must be within the recommended common-mode range, as shown in Section 6.6. The valid common-mode range is 4 V to 12 V (V_{CC} + 4 V to V_{CC+}).
- Output is limited by output range, which is typically 1.5 V to 10.5 V, or V_{CC} + 1.5 V to V_{CC+} 1.5 V.

9.3.2 Detailed Design Procedure

- · Avoid input voltage values below 1 V to prevent phase reversal where output goes high.
- Avoid input values below 4 V to prevent degraded V_{IO} that results in an apparent gain greater than 1. This
 may cause instability in some second-order filter designs.

9.3.3 Application Curves

9.4 System Examples

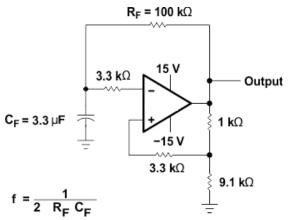


Figure 9-6. 0.5-Hz Square-Wave Oscillator

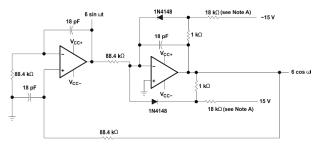


Figure 9-8. 100-kHz Quadrature Oscillator

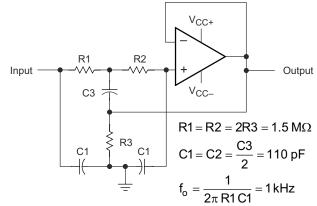


Figure 9-7. High-Q Notch Filter

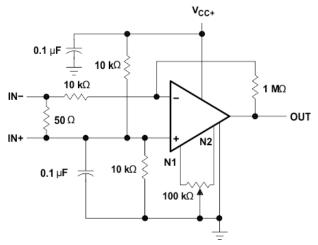


Figure 9-9. AC Amplifier

10 Power Supply Recommendations

CAUTION

Supply voltages larger than 36 V for a single-supply or outside the range of ±18 V for a dual-supply can permanently damage the device (see Section 6.2).

Place 0.1-µF bypass capacitors close to the power-supply pins to reduce errors coupling in from noisy or high-impedance power supplies. For more detailed information on bypass capacitor placement, see Section 11.

11 Layout

11.1 Layout Guidelines

For best operational performance of the device, use good PCB layout practices, including:

- Noise can propagate into analog circuitry through the power pins of the circuit as a whole, as well as the
 operational amplifier. Bypass capacitors are used to reduce the coupled noise by providing low impedance
 power sources local to the analog circuitry.
 - Connect low-ESR, 0.1-μF ceramic bypass capacitors between each supply pin and ground, placed as
 close to the device as possible. A single bypass capacitor from V_{CC+} to ground is applicable for singlesupply applications.
- Separate grounding for analog and digital portions of circuitry is one of the simplest and most-effective
 methods of noise suppression. One or more layers on multilayer PCBs are usually devoted to ground planes.
 A ground plane helps distribute heat and reduces EMI noise pickup. Take care to physically separate digital
 and analog grounds, paying attention to the flow of the ground current.
- To reduce parasitic coupling, run the input traces as far away from the supply or output traces as possible. If it is not possible to keep them separate, it is much better to cross the sensitive trace perpendicular as opposed to in parallel with the noisy trace.
- Place the external components as close to the device as possible. Keeping RF and RG close to the inverting input minimizes parasitic capacitance, as shown in Section 11.2.
- Keep the length of input traces as short as possible. Always remember that the input traces are the most sensitive part of the circuit.
- Consider a driven, low-impedance guard ring around the critical traces. A guard ring can significantly reduce leakage currents from nearby traces that are at different potentials.

11.2 Layout Example

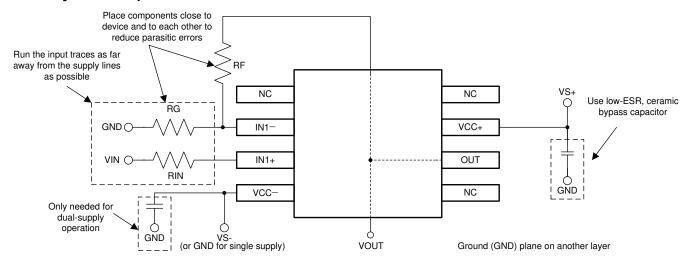


Figure 11-1. Operational Amplifier Board Layout for Noninverting Configuration

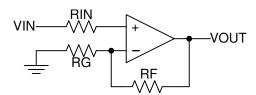


Figure 11-2. Operational Amplifier Schematic for Noninverting Configuration

12 Device and Documentation Support

12.1 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Subscribe to updates* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

12.2 Support Resources

TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

12.3 Trademarks

TI E2E™ is a trademark of Texas Instruments.

All trademarks are the property of their respective owners.

12.4 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

12.5 Glossary

TI Glossary

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical packaging and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser based versions of this data sheet, refer to the left hand navigation.

www.ti.com 20-May-2021

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
81023052A	ACTIVE	LCCC	FK	20	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	81023052A TL072MFKB	Samples
8102305HA	ACTIVE	CFP	U	10	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	8102305HA TL072M	Samples
8102305PA	ACTIVE	CDIP	JG	8	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	8102305PA TL072M	Samples
81023062A	ACTIVE	LCCC	FK	20	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	81023062A TL074MFKB	Samples
8102306CA	ACTIVE	CDIP	J	14	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	8102306CA TL074MJB	Samples
8102306DA	ACTIVE	CFP	W	14	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	8102306DA TL074MWB	Samples
JM38510/11905BPA	ACTIVE	CDIP	JG	8	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	JM38510 /11905BPA	Samples
M38510/11905BPA	ACTIVE	CDIP	JG	8	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	JM38510 /11905BPA	Samples
PTL072HIDR	ACTIVE	SOIC	D	8	3000	Non-RoHS & Non-Green	Call TI	Call TI	-40 to 125		Samples
PTL072HIPWR	ACTIVE	TSSOP	PW	8	3000	Non-RoHS & Non-Green	Call TI	Call TI	-40 to 125		Samples
TL071ACD	ACTIVE	SOIC	D	8	75	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	071AC	Samples
TL071ACDG4	ACTIVE	SOIC	D	8	75	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	071AC	Samples
TL071ACDR	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	071AC	Samples
TL071ACP	ACTIVE	PDIP	Р	8	50	RoHS & Green	NIPDAU	N / A for Pkg Type	0 to 70	TL071ACP	Samples
TL071BCD	ACTIVE	SOIC	D	8	75	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	071BC	Samples
TL071BCDR	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	071BC	Samples
TL071BCP	ACTIVE	PDIP	Р	8	50	RoHS & Green	NIPDAU	N / A for Pkg Type	N / A for Pkg Type 0 to 70 TL07		Samples
TL071CD	ACTIVE	SOIC	D	8	75	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	TL071C	Samples

om 20-May-2021

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
TL071CDR	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	TL071C	Samples
TL071CDRE4	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	TL071C	Samples
TL071CDRG4	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	TL071C	Samples
TL071CP	ACTIVE	PDIP	Р	8	50	RoHS & Green	NIPDAU	N / A for Pkg Type	0 to 70	TL071CP	Samples
TL071CPE4	ACTIVE	PDIP	Р	8	50	RoHS & Green	NIPDAU	N / A for Pkg Type	0 to 70	TL071CP	Samples
TL071CPSR	ACTIVE	SO	PS	8	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	T071	Samples
TL071ID	ACTIVE	SOIC	D	8	75	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	TL071I	Samples
TL071IDR	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	TL071I	Samples
TL071IDRG4	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	TL071I	Samples
TL071IP	ACTIVE	PDIP	Р	8	50	RoHS & Green	NIPDAU	N / A for Pkg Type	-40 to 85	TL071IP	Samples
TL072ACD	ACTIVE	SOIC	D	8	75	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	072AC	Samples
TL072ACDE4	ACTIVE	SOIC	D	8	75	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	072AC	Samples
TL072ACDR	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	072AC	Samples
TL072ACDRE4	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	072AC	Samples
TL072ACDRG4	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	072AC	Samples
TL072ACP	ACTIVE	PDIP	Р	8	50	RoHS & Green	NIPDAU	N / A for Pkg Type	0 to 70	TL072ACP	Samples
TL072ACPE4	ACTIVE	PDIP	Р	8	50	RoHS & Green	NIPDAU	N / A for Pkg Type	0 to 70	TL072ACP	Samples
TL072BCD	ACTIVE	SOIC	D	8	75	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	072BC	Samples
TL072BCDE4	ACTIVE	SOIC	D	8	75	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	072BC	Samples
TL072BCDG4	ACTIVE	SOIC	D	8	75	RoHS & Green	NIPDAU	Level-1-260C-UNLIM 0 to 70		072BC	Samples
TL072BCDR	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	072BC	Samples

com 20-May-2021

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
TL072BCDRG4	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	072BC	Samples
TL072BCP	ACTIVE	PDIP	Р	8	50	RoHS & Green	NIPDAU	N / A for Pkg Type	0 to 70	TL072BCP	Samples
TL072BCPE4	ACTIVE	PDIP	Р	8	50	RoHS & Green	NIPDAU	N / A for Pkg Type	0 to 70	TL072BCP	Samples
TL072CD	ACTIVE	SOIC	D	8	75	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	TL072C	Samples
TL072CDE4	ACTIVE	SOIC	D	8	75	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	TL072C	Samples
TL072CDG4	ACTIVE	SOIC	D	8	75	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	TL072C	Samples
TL072CDR	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	TL072C	Samples
TL072CDRE4	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	TL072C	Samples
TL072CDRG4	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	TL072C	Samples
TL072CP	ACTIVE	PDIP	Р	8	50	RoHS & Green	NIPDAU	N / A for Pkg Type	0 to 70	TL072CP	Samples
TL072CPE4	ACTIVE	PDIP	Р	8	50	RoHS & Green	NIPDAU	N / A for Pkg Type	0 to 70	TL072CP	Samples
TL072CPS	ACTIVE	SO	PS	8	80	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	T072	Samples
TL072CPSR	ACTIVE	SO	PS	8	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	T072	Samples
TL072CPSRE4	ACTIVE	SO	PS	8	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	T072	Samples
TL072CPSRG4	ACTIVE	SO	PS	8	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	T072	Samples
TL072CPWR	ACTIVE	TSSOP	PW	8	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	T072	Samples
TL072CPWRE4	ACTIVE	TSSOP	PW	8	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	T072	Samples
TL072CPWRG4	ACTIVE	TSSOP	PW	8	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	T072	Samples
TL072ID	ACTIVE	SOIC	D	8	75	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	TL072I	Samples
TL072IDE4	ACTIVE	SOIC	D	8	75	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	TL072I	Samples
TL072IDG4	ACTIVE	SOIC	D	8	75	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	TL072I	Samples

20-May-2021

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
TL072IDR	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	TL072I	Samples
TL072IDRE4	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	TL072I	Samples
TL072IDRG4	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	TL072I	Samples
TL072IP	ACTIVE	PDIP	Р	8	50	RoHS & Green	NIPDAU	N / A for Pkg Type	-40 to 85	TL072IP	Samples
TL072IPE4	ACTIVE	PDIP	Р	8	50	RoHS & Green	NIPDAU	N / A for Pkg Type	-40 to 85	TL072IP	Samples
TL072MFKB	ACTIVE	LCCC	FK	20	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	81023052A TL072MFKB	Samples
TL072MJG	ACTIVE	CDIP	JG	8	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	TL072MJG	Samples
TL072MJGB	ACTIVE	CDIP	JG	8	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	8102305PA TL072M	Samples
TL072MUB	ACTIVE	CFP	U	10	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	8102305HA TL072M	Samples
TL074ACD	ACTIVE	SOIC	D	14	50	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	TL074AC	Samples
TL074ACDE4	ACTIVE	SOIC	D	14	50	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	TL074AC	Samples
TL074ACDR	ACTIVE	SOIC	D	14	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	TL074AC	Samples
TL074ACDRE4	ACTIVE	SOIC	D	14	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	TL074AC	Samples
TL074ACDRG4	ACTIVE	SOIC	D	14	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	TL074AC	Samples
TL074ACN	ACTIVE	PDIP	N	14	25	RoHS & Green	NIPDAU	N / A for Pkg Type	0 to 70	TL074ACN	Samples
TL074ACNE4	ACTIVE	PDIP	N	14	25	RoHS & Green	NIPDAU	N / A for Pkg Type	0 to 70	TL074ACN	Samples
TL074ACNSR	ACTIVE	SO	NS	14	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	TL074A	Samples
TL074BCD	ACTIVE	SOIC	D	14	50	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	TL074BC	Samples
TL074BCDE4	ACTIVE	SOIC	D	14	50	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	TL074BC	Samples
TL074BCDR	ACTIVE	SOIC	D	14	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	TL074BC	Samples

om 20-May-2021

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
TL074BCDRE4	ACTIVE	SOIC	D	14	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	TL074BC	Samples
TL074BCDRG4	ACTIVE	SOIC	D	14	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	TL074BC	Samples
TL074BCN	ACTIVE	PDIP	N	14	25	RoHS & Green	NIPDAU	N / A for Pkg Type	0 to 70	TL074BCN	Samples
TL074BCNE4	ACTIVE	PDIP	N	14	25	RoHS & Green	NIPDAU	N / A for Pkg Type	0 to 70	TL074BCN	Samples
TL074CD	ACTIVE	SOIC	D	14	50	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	TL074C	Samples
TL074CDBR	ACTIVE	SSOP	DB	14	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	T074	Samples
TL074CDG4	ACTIVE	SOIC	D	14	50	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	TL074C	Samples
TL074CDR	ACTIVE	SOIC	D	14	2500	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	0 to 70	TL074C	Samples
TL074CDRG4	ACTIVE	SOIC	D	14	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	TL074C	Samples
TL074CN	ACTIVE	PDIP	N	14	25	RoHS & Green	NIPDAU	N / A for Pkg Type	0 to 70	TL074CN	Samples
TL074CNE4	ACTIVE	PDIP	N	14	25	RoHS & Green	NIPDAU	N / A for Pkg Type	0 to 70	TL074CN	Samples
TL074CNSR	ACTIVE	so	NS	14	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	TL074	Samples
TL074CNSRG4	ACTIVE	SO	NS	14	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	TL074	Samples
TL074CPW	ACTIVE	TSSOP	PW	14	90	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	T074	Samples
TL074CPWR	ACTIVE	TSSOP	PW	14	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	T074	Samples
TL074CPWRE4	ACTIVE	TSSOP	PW	14	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	T074	Samples
TL074CPWRG4	ACTIVE	TSSOP	PW	14	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	T074	Samples
TL074HIDR	ACTIVE	SOIC	D	14	2500	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	TL074HID	Samples
TL074HIPWR	ACTIVE	TSSOP	PW	14	2000	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	TL074PW	Samples
TL074ID	ACTIVE	SOIC	D	14	50	RoHS & Green	NIPDAU	Level-1-260C-UNLIM -40 to 85		TL074I	Samples
TL074IDE4	ACTIVE	SOIC	D	14	50	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	TL074I	Samples

www.ti.com 20-May-2021

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
TL074IDG4	ACTIVE	SOIC	D	14	50	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	TL074I	Samples
TL074IDR	ACTIVE	SOIC	D	14	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	TL074I	Samples
TL074IDRE4	ACTIVE	SOIC	D	14	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	TL074I	Samples
TL074IDRG4	ACTIVE	SOIC	D	14	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	TL074I	Samples
TL074IN	ACTIVE	PDIP	N	14	25	RoHS & Green	NIPDAU	N / A for Pkg Type	-40 to 85	TL074IN	Samples
TL074MFK	ACTIVE	LCCC	FK	20	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	TL074MFK	Samples
TL074MFKB	ACTIVE	LCCC	FK	20	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	81023062A TL074MFKB	Samples
TL074MJ	ACTIVE	CDIP	J	14	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	TL074MJ	Samples
TL074MJB	ACTIVE	CDIP	J	14	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	8102306CA TL074MJB	Samples
TL074MWB	ACTIVE	CFP	W	14	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	8102306DA TL074MWB	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

PACKAGE OPTION ADDENDUM

www.ti.com 20-May-2021

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

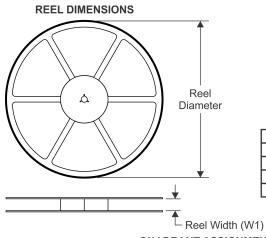
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF TL072, TL072M, TL074, TL074M:

Catalog: TL072, TL074

■ Enhanced Product : TL072-EP, TL072-EP, TL074-EP, TL074-EP

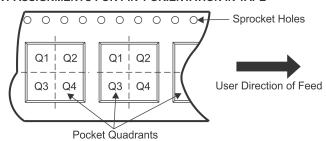
Military: TL072M, TL074M


NOTE: Qualified Version Definitions:

- Catalog TI's standard catalog product
- Enhanced Product Supports Defense, Aerospace and Medical Applications
- Military QML certified for Military and Defense Applications

PACKAGE MATERIALS INFORMATION

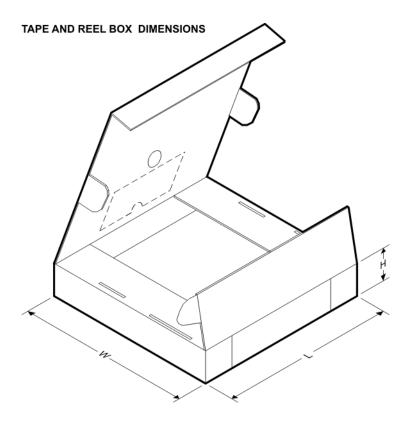
www.ti.com 22-Apr-2021


TAPE AND REEL INFORMATION

TAPE DIMENSIONS KO P1 BO W Cavity A0

	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TL071ACDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TL071BCDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TL071CDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TL071CDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TL071IDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TL072ACDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TL072BCDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TL072CDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TL072CDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TL072CPWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
TL072IDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TL072IDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TL074ACDR	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
TL074ACNSR	SO	NS	14	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1
TL074BCDR	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
TL074CDR	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
TL074CDRG4	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
TL074CNSR	SO	NS	14	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1

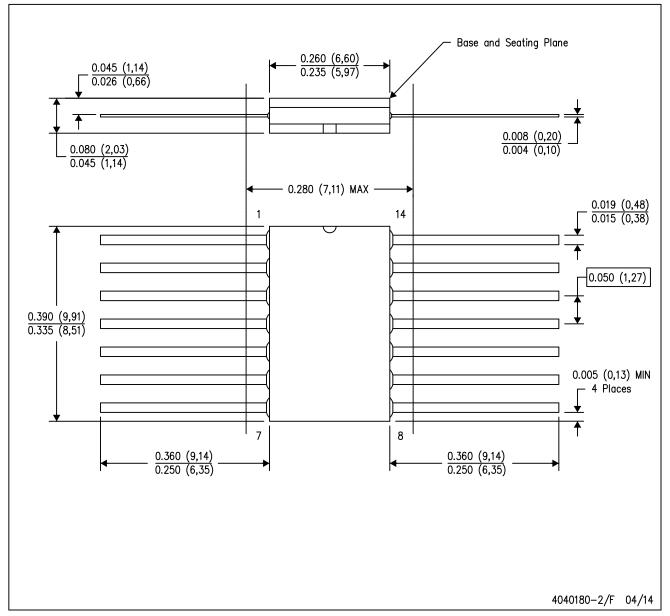
PACKAGE MATERIALS INFORMATION

www.ti.com 22-Apr-2021

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TL074CPWR	TSSOP	PW	14	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
TL074HIDR	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
TL074HIPWR	TSSOP	PW	14	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
TL074IDR	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1

*All dimensions are nominal

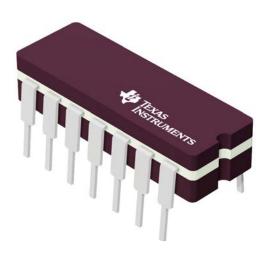
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TL071ACDR	SOIC	D	8	2500	340.5	338.1	20.6
TL071BCDR	SOIC	D	8	2500	340.5	338.1	20.6
TL071CDR	SOIC	D	8	2500	340.5	338.1	20.6
TL071CDR	SOIC	D	8	2500	853.0	449.0	35.0
TL071IDR	SOIC	D	8	2500	340.5	338.1	20.6
TL072ACDR	SOIC	D	8	2500	340.5	338.1	20.6
TL072BCDR	SOIC	D	8	2500	340.5	338.1	20.6
TL072CDR	SOIC	D	8	2500	853.0	449.0	35.0
TL072CDR	SOIC	D	8	2500	340.5	338.1	20.6
TL072CPWR	TSSOP	PW	8	2000	853.0	449.0	35.0
TL072IDR	SOIC	D	8	2500	853.0	449.0	35.0
TL072IDR	SOIC	D	8	2500	340.5	338.1	20.6
TL074ACDR	SOIC	D	14	2500	333.2	345.9	28.6


PACKAGE MATERIALS INFORMATION

www.ti.com 22-Apr-2021

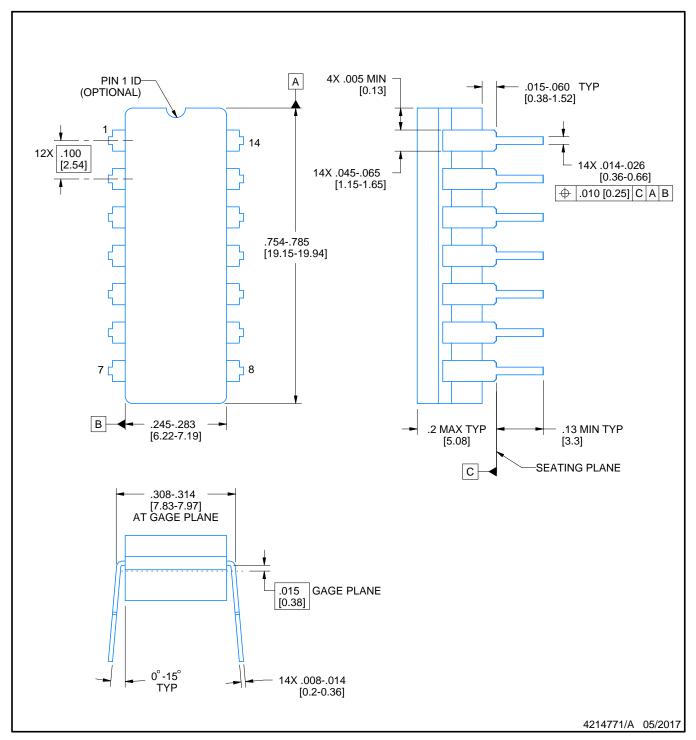
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TL074ACNSR	SO	NS	14	2000	853.0	449.0	35.0
TL074BCDR	SOIC	D	14	2500	333.2	345.9	28.6
TL074CDR	SOIC	D	14	2500	333.2	345.9	28.6
TL074CDRG4	SOIC	D	14	2500	333.2	345.9	28.6
TL074CNSR	SO	NS	14	2000	853.0	449.0	35.0
TL074CPWR	TSSOP	PW	14	2000	853.0	449.0	35.0
TL074HIDR	SOIC	D	14	2500	853.0	449.0	35.0
TL074HIPWR	TSSOP	PW	14	2000	853.0	449.0	35.0
TL074IDR	SOIC	D	14	2500	333.2	345.9	28.6

W (R-GDFP-F14)

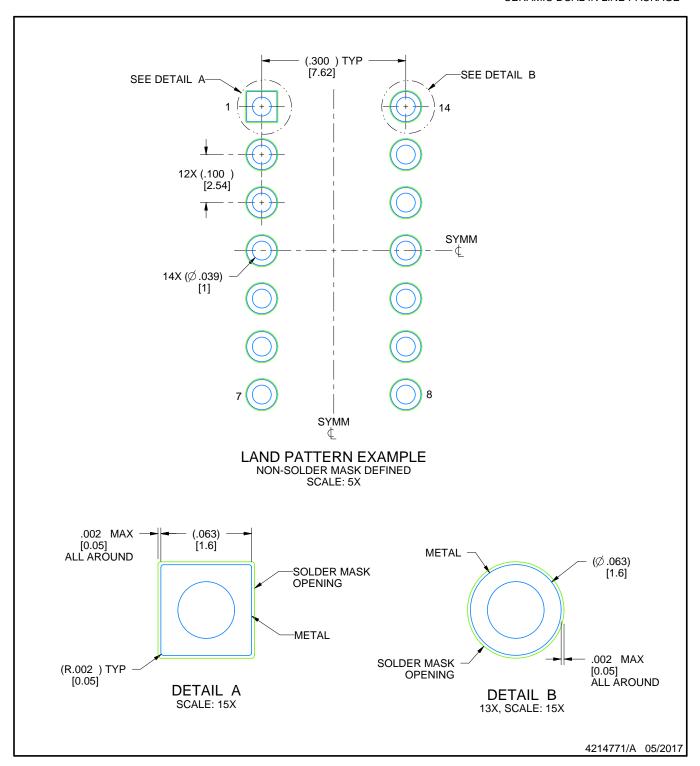

CERAMIC DUAL FLATPACK

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only.
- E. Falls within MIL STD 1835 GDFP1-F14

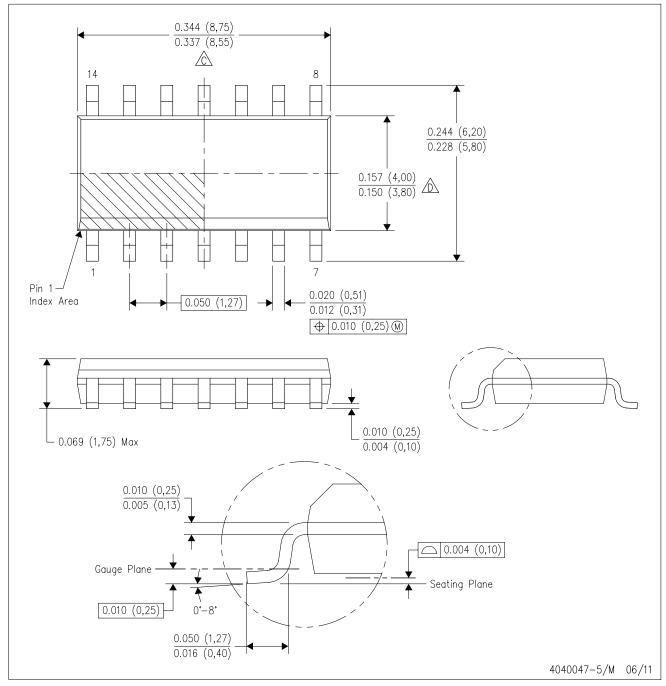
CERAMIC DUAL IN LINE PACKAGE


Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

4040083-5/G


CERAMIC DUAL IN LINE PACKAGE

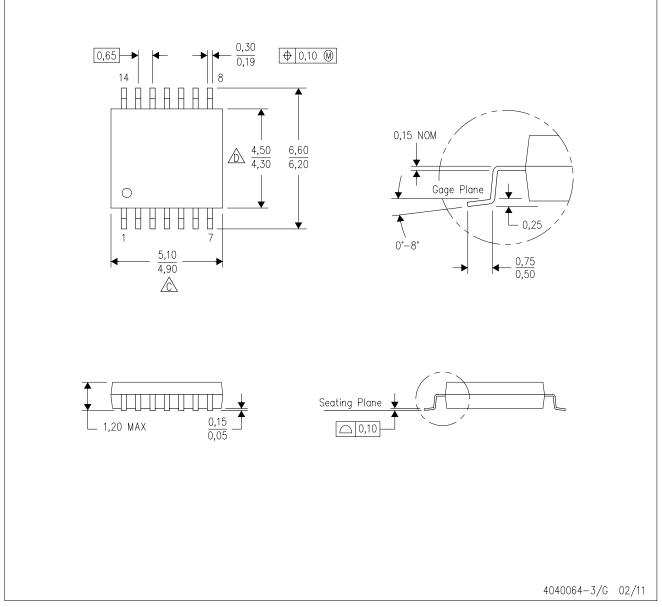
- 1. All controlling linear dimensions are in inches. Dimensions in brackets are in millimeters. Any dimension in brackets or parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. This package is hermitically sealed with a ceramic lid using glass frit.
- His package is remitted by sealed with a ceramic its using glass mit.
 Index point is provided on cap for terminal identification only and on press ceramic glass frit seal only.
 Falls within MIL-STD-1835 and GDIP1-T14.



CERAMIC DUAL IN LINE PACKAGE

D (R-PDSO-G14)

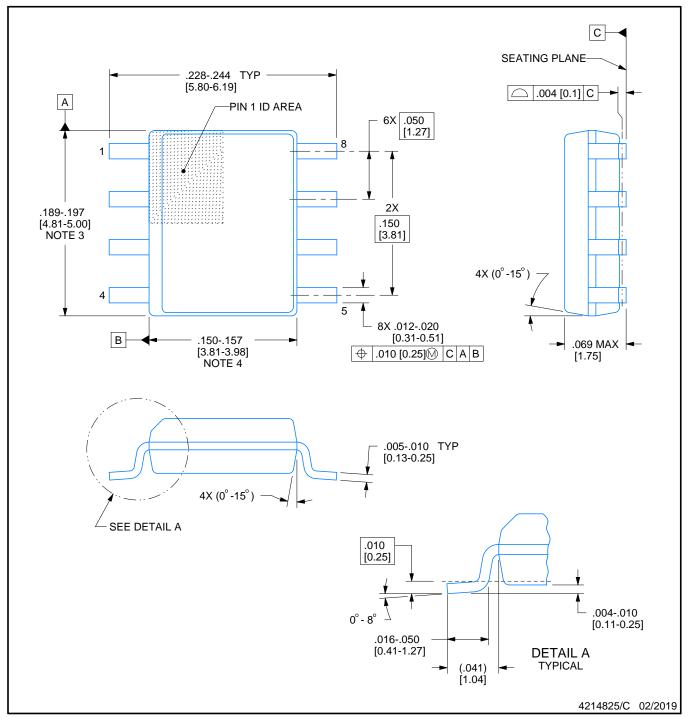
PLASTIC SMALL OUTLINE



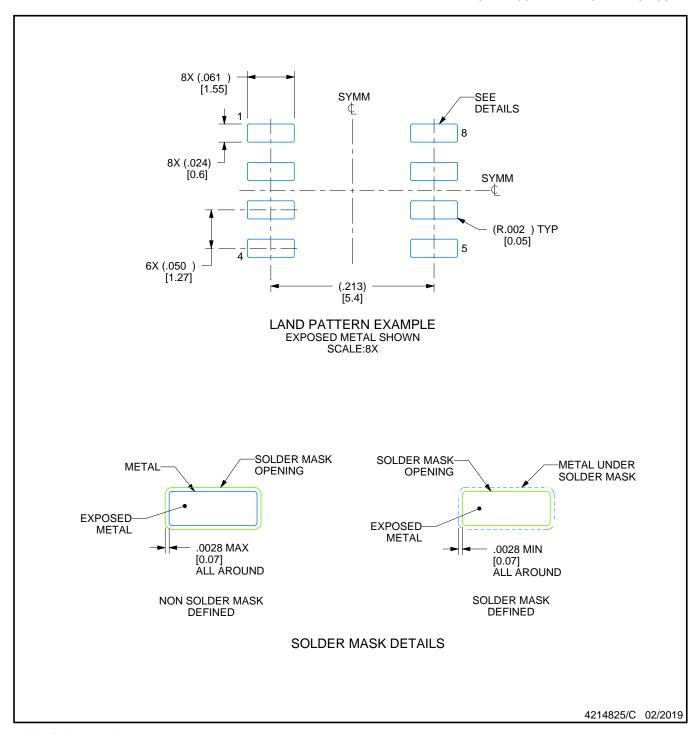
- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AB.

PW (R-PDSO-G14)

PLASTIC SMALL OUTLINE

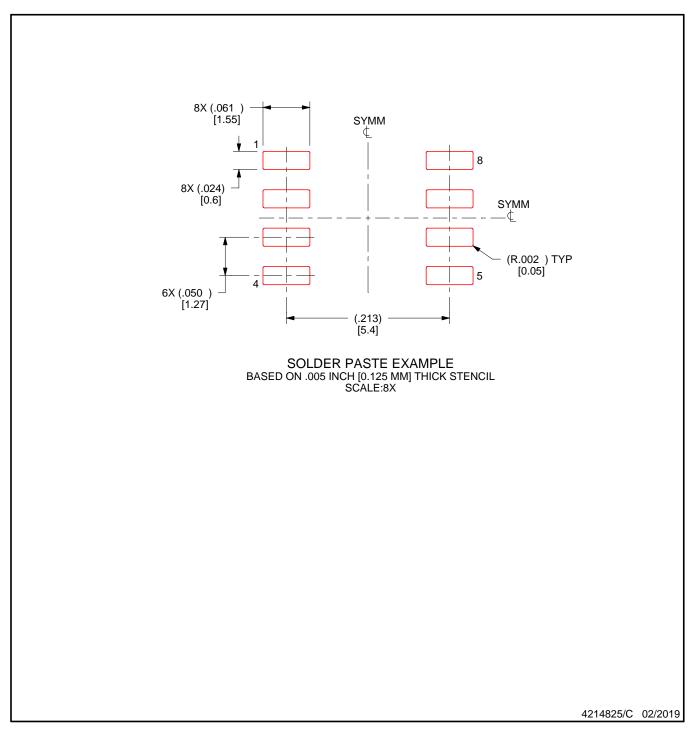


- A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.
- B. This drawing is subject to change without notice.
 - Sody length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.
- E. Falls within JEDEC MO-153


SMALL OUTLINE INTEGRATED CIRCUIT

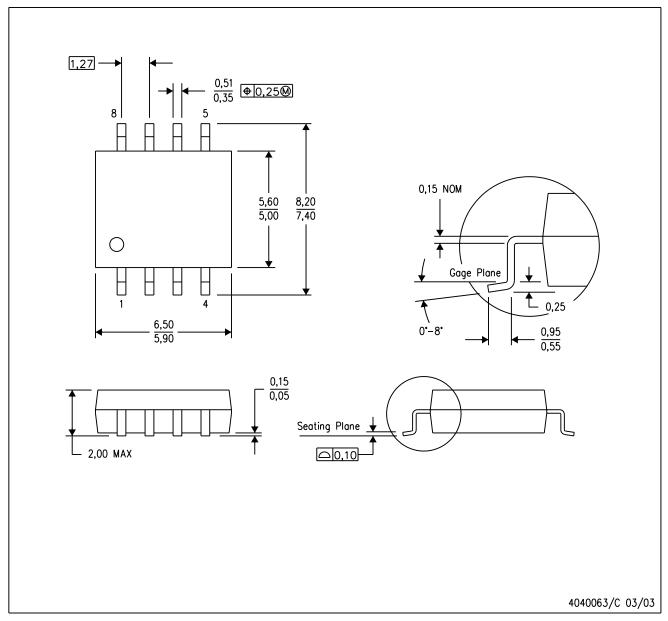
- 1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side.
- 4. This dimension does not include interlead flash.
- 5. Reference JEDEC registration MS-012, variation AA.

SMALL OUTLINE INTEGRATED CIRCUIT


NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

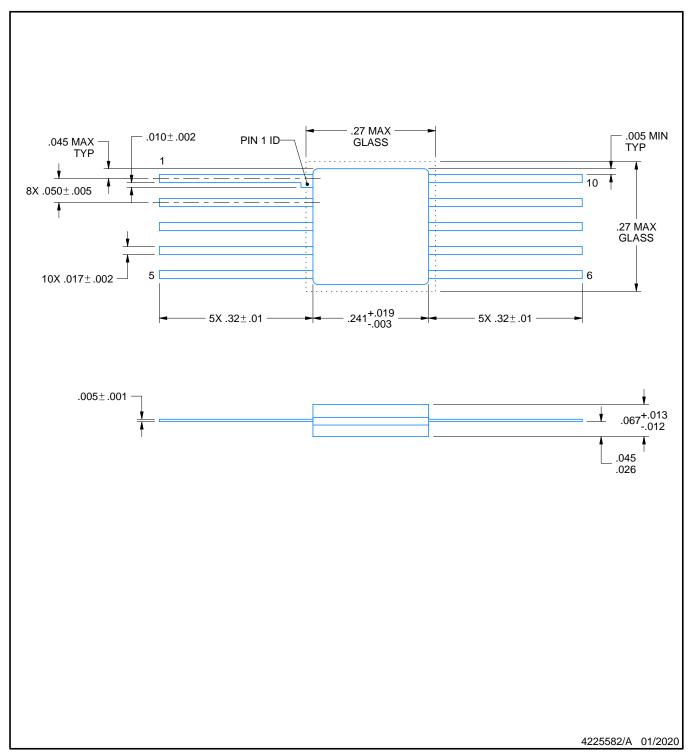
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.


SMALL OUTLINE INTEGRATED CIRCUIT

NOTES: (continued)

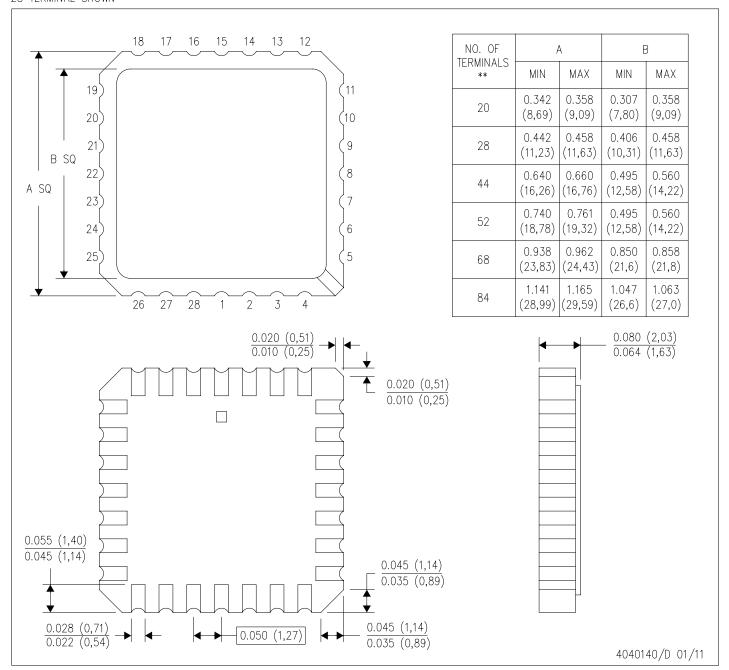
- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

NOTES: A. All linear dimensions are in millimeters.


B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

CERAMIC FLATPACK

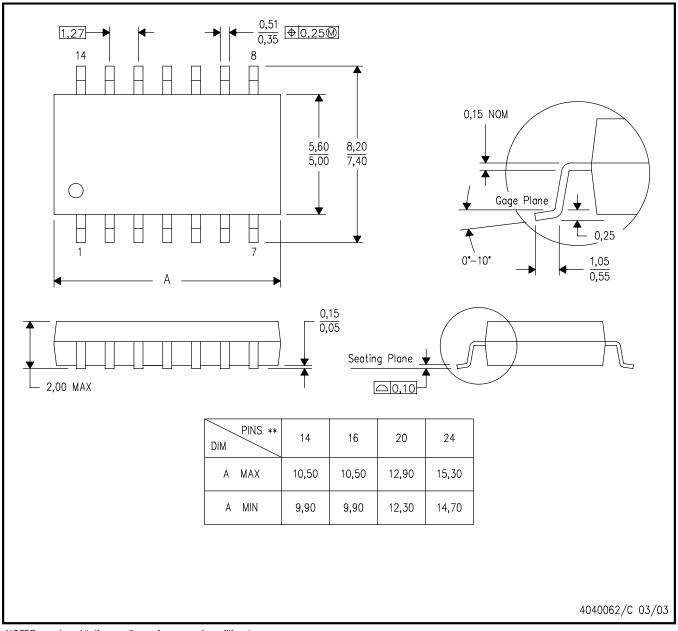

- 1. All linear dimensions are in inches. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 2. This drawing is subject to change without notice.

FK (S-CQCC-N**)

LEADLESS CERAMIC CHIP CARRIER

28 TERMINAL SHOWN

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a metal lid.
- D. Falls within JEDEC MS-004

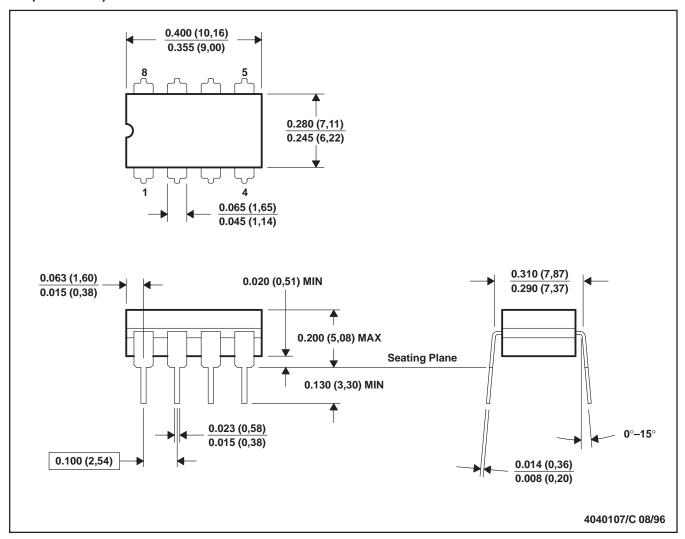


MECHANICAL DATA

NS (R-PDSO-G**)

14-PINS SHOWN

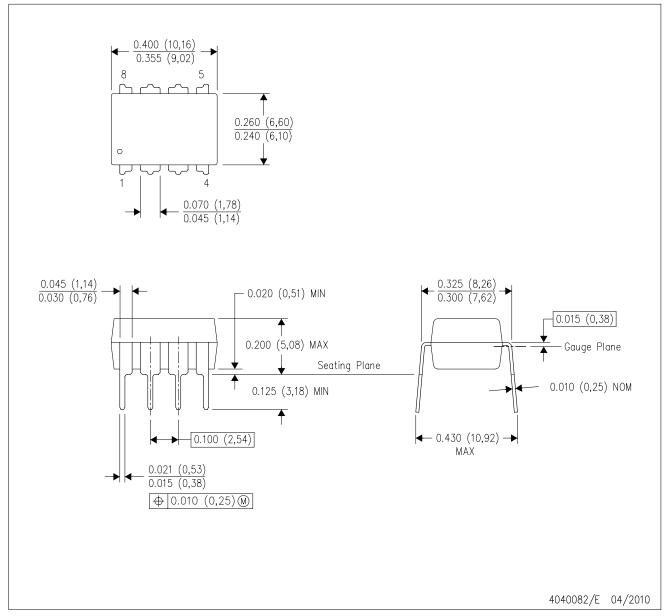
PLASTIC SMALL-OUTLINE PACKAGE



- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

JG (R-GDIP-T8)

CERAMIC DUAL-IN-LINE



NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification.
- E. Falls within MIL STD 1835 GDIP1-T8

P (R-PDIP-T8)

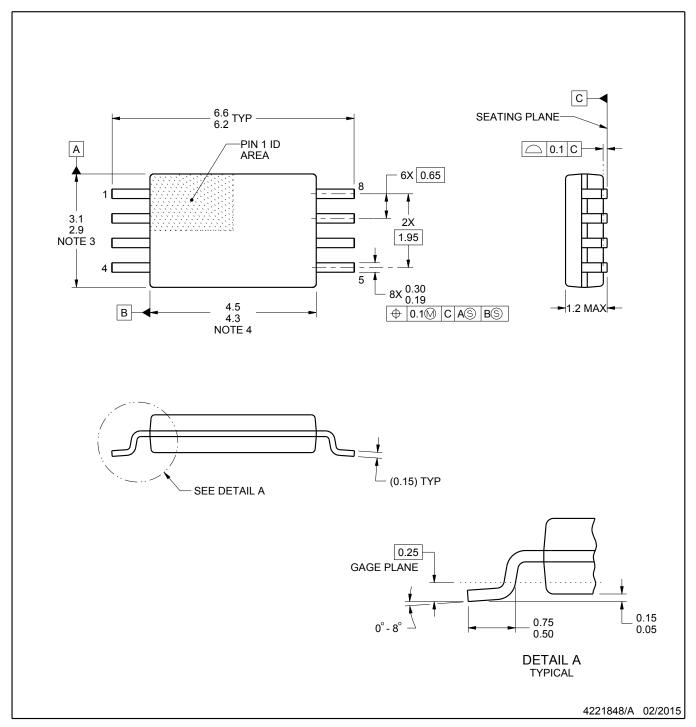
PLASTIC DUAL-IN-LINE PACKAGE

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-001 variation BA.

N (R-PDIP-T**)

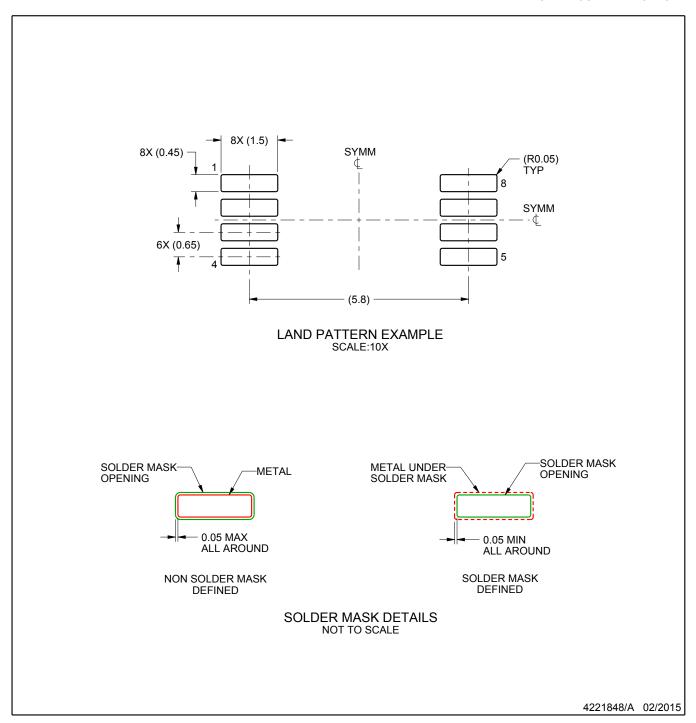
PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN



- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

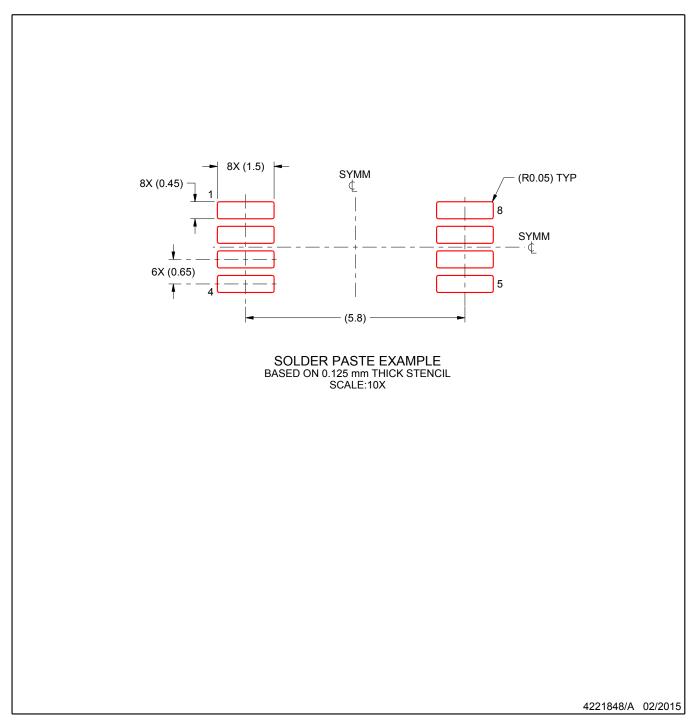
SMALL OUTLINE PACKAGE


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153, variation AA.

SMALL OUTLINE PACKAGE

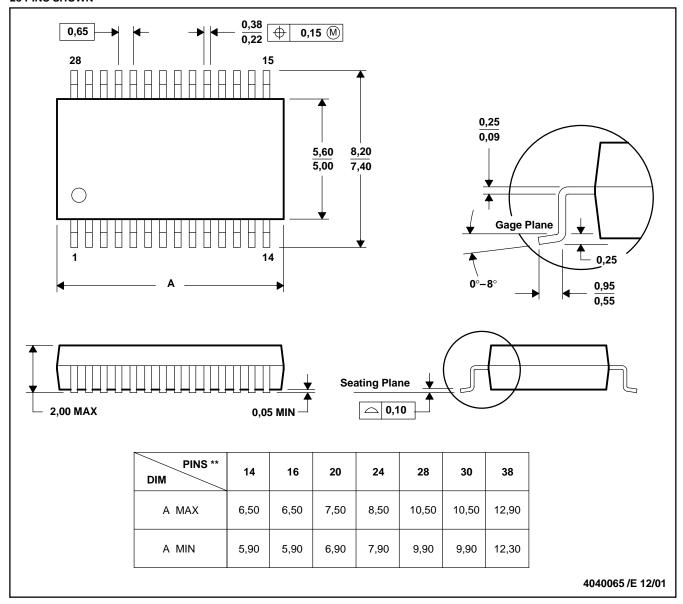

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE PACKAGE

NOTES: (continued)


- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

DB (R-PDSO-G**)

PLASTIC SMALL-OUTLINE

28 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.

D. Falls within JEDEC MO-150

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (https://www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2021, Texas Instruments Incorporated