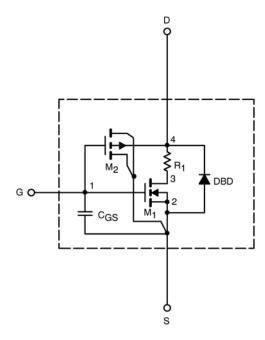


# SPICE Device Model SUD15N15-95 Vishay Siliconix

### N-Channel 150-V (D-S) 175° MOSFET

### **CHARACTERISTICS**

- N-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- Level 3 MOS


- Apply for both Linear and Switching Application
- Accurate over the -55 to 125°C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics

### **DESCRIPTION**

The attached spice model describes the typical electrical characteristics of the n-channel vertical DMOS. The subcircuit model is extracted and optimized over the -55 to  $125^{\circ}$ C temperature ranges under the pulsed 0 to 10V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched  $C_{\rm gd}$  model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

### SUBCIRCUIT MODEL SCHEMATIC



This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

Document Number: 71756 www.vishay.com 05-Jun-04 1

# **SPICE Device Model SUD15N15-95**

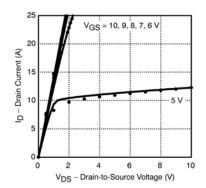
## Vishay Siliconix

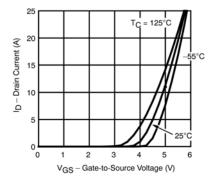


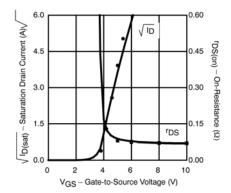
| SPECIFICATIONS (T <sub>J</sub> = 25°C UNLESS OTHERWISE NOTED) |                     |                                                                                                                         |                   |                  |      |
|---------------------------------------------------------------|---------------------|-------------------------------------------------------------------------------------------------------------------------|-------------------|------------------|------|
| Parameter                                                     | Symbol              | Test Conditions                                                                                                         | Simulated<br>Data | Measured<br>Data | Unit |
| Static                                                        |                     |                                                                                                                         |                   |                  |      |
| Gate Threshold Voltage                                        | $V_{GS(th)}$        | $V_{DS} = V_{GS}, I_{D} = 250 \mu A$                                                                                    | 2.6               |                  | V    |
| On-State Drain Current <sup>b</sup>                           | I <sub>D(on)</sub>  | V <sub>DS</sub> = 5 V, V <sub>GS</sub> = 10 V                                                                           | 71                |                  | Α    |
| Drain-Source On-State Resistance <sup>b</sup>                 | r <sub>DS(on)</sub> | $V_{GS} = 10 \text{ V}, I_D = 15 \text{ A}$                                                                             | 0.069             | 0.077            | Ω    |
|                                                               |                     | V <sub>GS</sub> = 10 V, I <sub>D</sub> = 15 A, T <sub>J</sub> = 125°C                                                   | 0.115             |                  |      |
|                                                               |                     | V <sub>GS</sub> = 10 V, I <sub>D</sub> = 15 A, T <sub>J</sub> = 175°C                                                   | 0.139             |                  |      |
|                                                               |                     | V <sub>GS</sub> = 6 V, I <sub>D</sub> = 10 A                                                                            | 0.080             | 0.081            |      |
| Forward Voltage <sup>b</sup>                                  | V <sub>SD</sub>     | I <sub>S</sub> = 15 A, V <sub>GS</sub> = 0 V                                                                            | 0.89              | 0.90             | V    |
| Dynamic <sup>a</sup>                                          |                     |                                                                                                                         |                   |                  |      |
| Input Capacitance                                             | C <sub>iss</sub>    | V <sub>GS</sub> = 0 V, V <sub>DS</sub> = 25 V, f = 1 MHz                                                                | 897               | 900              | pF   |
| Output Capacitance                                            | C <sub>oss</sub>    |                                                                                                                         | 126               | 115              |      |
| Reverse Transfer Capacitance                                  | C <sub>rss</sub>    |                                                                                                                         | 73                | 70               |      |
| Total Gate Charge <sup>c</sup>                                | Qg                  | $V_{DS} = 75 \text{ V}, V_{GS} = 10 \text{ V}, I_{D} = 15 \text{ A}$                                                    | 21                | 20               | nC   |
| Gate-Source Charge <sup>c</sup>                               | Q <sub>gs</sub>     |                                                                                                                         | 5.5               | 5.5              |      |
| Gate-Drain Charge <sup>c</sup>                                | Q <sub>gd</sub>     |                                                                                                                         | 7                 | 7                |      |
| Turn-On Delay Time <sup>c</sup>                               | t <sub>d(on)</sub>  | $V_{DD}$ = 75 V, $R_{L}$ = 5 Ω $I_{D}$ $\cong$ 15 A, $V_{GEN}$ = 10 V, $R_{G}$ = 2.5 Ω $I_{F}$ = 15 A, di/dt = 100 A/μs | 12                | 8                | ns   |
| Rise Time <sup>c</sup>                                        | t <sub>r</sub>      |                                                                                                                         | 19                | 35               |      |
| Turn-Off Delay Time <sup>c</sup>                              | t <sub>d(off)</sub> |                                                                                                                         | 36                | 17               |      |
| Fall Time <sup>c</sup>                                        | t <sub>f</sub>      |                                                                                                                         | 41                | 30               |      |
| Source-Drain Reverse Recovery Time                            | t <sub>rr</sub>     |                                                                                                                         | 48                | 55               |      |

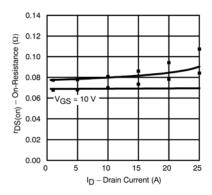
### Notes

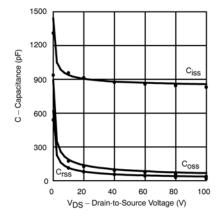
Guaranteed by design, not subject to production testing. Pulse test; pulse width  $\leq 300~\mu s$ , duty cycle  $\leq 2\%$ . Independent of operating temperature. a.

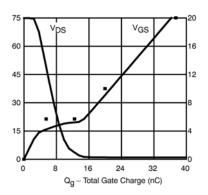

www.vishay.com Document Number: 71756


b.





### SPICE Device Model SUD15N15-95 Vishay Siliconix


### COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED)














Note: Dots and squares represent measured data.