

SANYO Semiconductors DATA SHEET

An ON Semiconductor Company

STK433-840N-E Thick-Film Hybrid IC 4channel class-AB Audio Power IC 40W × 4ch

Overview

The STK433-840N-E is 4 channels class-AB audio frequency power amplifier hybrid IC.

Application

Audio Power amplifiers

Features

- Pin-to-pin compatible outputs ranging from 40W to 80W.
- Output load impedance: $R_{\rm L} = 6\Omega$ recommended.
- Allows the use of predesigned applications for standby and mute circuit.

• Miniature package.

Allowable load shorted time: 0.3 second

Series model

	STK433-040N-E	STK433-060N-E	STK433-130N-E	STK433-330N-E
Output1 (10%/1kHz)	$40W \times 2ch$	50W × 2ch	150W × 2ch	150W × 3ch
Output2 (0.4%/20Hz to 20kHz)	$25W \times 2ch$	35W × 2ch	100W × 2ch	$100W \times 3\text{ch}$
Max. rating V _{CC} (quiescent)	±38V	±46V	±71.5V	±71.5V
Max. rating V _{CC} (6Ω)	±36V	±40V	±63V	±63V
Recommended operating V_{CC} (6 Ω)	±24V	±27V	±44V	±44V
Dimensions (excluding pin height)	47.0mm×25.	6mm×9.0mm	67.0mm×25.6mm×9.0mm	64.0mm×36.6mm×9.0mm

	STK433-840N-E	STK433-870N-E	STK433-890N-E
Output1 (10%/1kHz)	$40W \times 4ch$	60W × 4ch	80W × 4ch
Output2 (0.4%/20Hz to 20kHz)	$25W \times 4ch$	40W × 4ch	50W × 4ch
Max. rating V _{CC} (quiescent)	±38V	±50V	±54V
Max. rating V_{CC} (6 Ω)	±36V	±44V	±47V
Recommended operating V_{CC} (6 Ω)	±25V	±30V	±34V
Dimensions (excluding pin height)	64.0mm×31.	78.0mm×44.1mm×9.0mm	

- Any and all SANYO Semiconductor Co.,Ltd. products described or contained herein are, with regard to "standard application", intended for the use as general electronics equipment. The products mentioned herein shall not be intended for use for any "special application" (medical equipment whose purpose is to sustain life, aerospace instrument, nuclear control device, burning appliances, transportation machine, traffic signal system, safety equipment etc.) that shall require extremely high level of reliability and can directly threaten human lives in case of failure or malfunction of the product or may cause harm to human bodies, nor shall they grant any guarantee thereof. If you should intend to use our products for new introduction or other application different from current conditions on the usage of automotive device, communication device, office equipment, industrial equipment etc., please consult with us about usage condition (temperature, operation time etc.) prior to the intended use. If there is no consultation or inquiry before the intended use, our customer shall be solely responsible for the use.
- Specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.

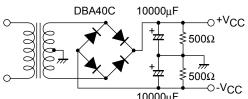
SANYO Semiconductor Co., Ltd.

Specifications

Absolute Maximum Ratings at Ta = 25°C, Tc = 25°C unless otherwise specified

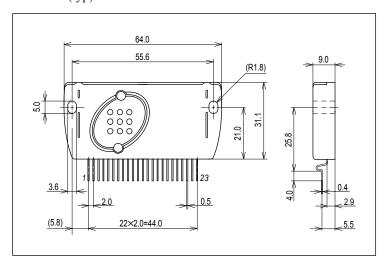
Parameter	Symbol	Conditions	Ratings	Unit
Maximum power supply voltage	V _{CC} max (0)	Non signal	±38	V
	V _{CC} max (1)	Signal, $R_L \ge 6\Omega$	±36	V
	V _{CC} max (2)	Signal, $R_L = 4\Omega$	±30	V
Minimum operation supply voltage	V _{CC} min		±10	V
#13 Operating voltage *5	VST OFF max	#13pin voltage	-0.3 to +5.5	V
Thermal resistance	θј-с	Per power transistor	4.2	°C/W
Junction temperature	Tj max	Both the Tj max and Tc max	150	°C
Operating substrate temperature	Tc max	conditions must be met.	125	°C
Storage temperature	Tstg		-30 to +125	°C
Allowable time for load short-circuit *4	ts	V_{CC} = ±25V, R_L = 6Ω , f = 50Hz P_O = 25W, 1ch drive	0.3	s

Operating Characteristics at Tc = 25°C, $R_L = 6\Omega$ (Non-inductive Load), $Rg = 600\Omega$, VG = 30dB


				С	onditions *							
Parameter		Symbol	V _{CC} [V]	f [Hz]	P _O [W]	THD [%]		min	typ	max	Unit	
Output power *	*1	P _O 1	±25	20 to 20k		0.6		23	25			
		P _O 2	±25	1k		10			40		W	
Total harmonic distortion *	*1	THD 1	±25	20 to 20k			\ (C			0.6		
		THD 2	±25	1k 5.0 VG=300		VG=30dB		0.02		%		
Frequency characteristics	*1	f _L , f _H	±25 1.0 +0 -3dB 20 to 50				20 to 50k		Hz			
Input impedance		ri	±25	1k	1.0				55		kΩ	
Output noise voltage	*3	V _{NO}	±30				Rg=2.2kΩ			1.0	mVrms	
Quiescent current		Icco	±30				No load	30	60	140	mA	
Quiescent current at stand-by I _{CST}		ICST	±30				VST=0V			1.0	mA	
Neutral voltage		٧ _N	±30					-70	0	+70	mV	
#13 Stand-by ON threshold	*5	VST ON	±25				Stand-by		0	0.6	V	
#13 Stand-by OFF threshold	*5	VST OFF	±25				Operation	2.5	3.0	5.5	V	

Note

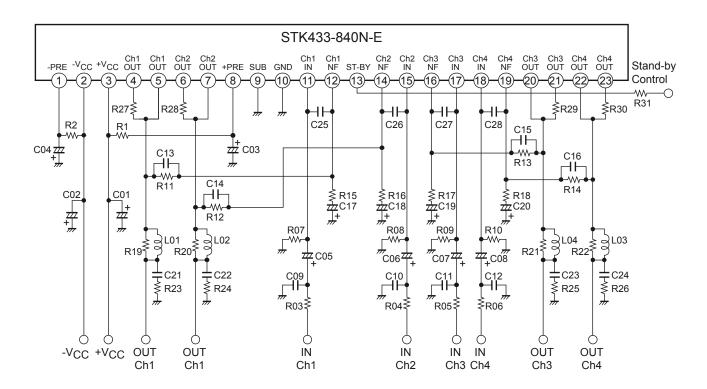
- *1. 1channel operation.
- *2. All tests are measured using a constant-voltage supply unless otherwise specified
- *3. The output noise voltage is peak value of an average-reading meter with a rms value scale (VTVM). A regulated AC supply (50Hz) should be used to eliminate the effects of AC primary line flicker noise
- *4. Allowable time for load short-circuit and output noise voltage are measured using the specified transformer power supply.
- *5. The impression voltage of '#13 (Stand-By) pin' must not exceed the maximum rating. Power amplifier operate by impressing voltage +2.5 to +5.5V to '#13 (Stand-By) pin'.
- * Please connect PreV_{CC} pin (#1 pin) with the stable minimum voltage. and connect so that current does not flow in by reverse bias.
- * In case of heat sink design, we request customer to design in the condition to have assumed market.
- * The case of this Hybrid-IC is using thermosetting silicon adhesive (TSE322SX).
- * Weight of HIC: (typ) 20.6g


Outer carton dimensions (W×L×H): 502mm×247mm×282mm

Specified transformer power supply (Equivalent to MG-200)

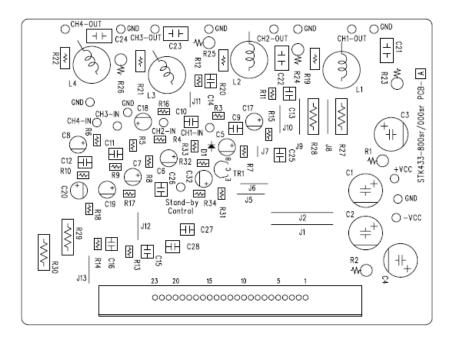

Package Dimensions

unit: mm (typ)

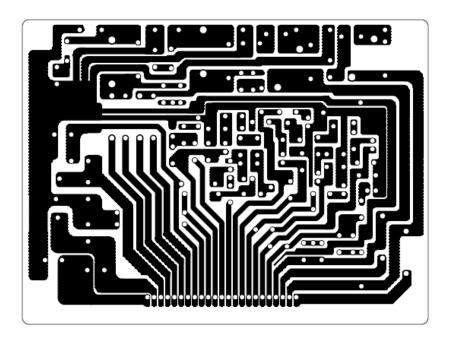


RoHS directive pass

Equivalent Circuit



Application Circuit



PCB Layout Example

Top view

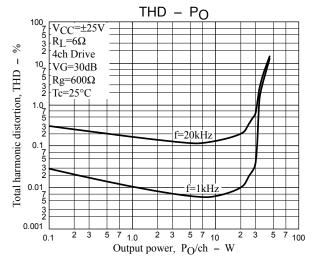
Bottom view

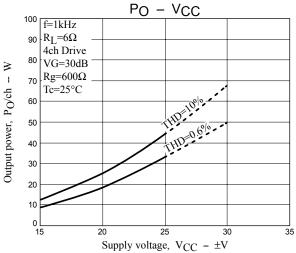
STK433-800NSr PCB PARTS LIST

PCB Name: STK403-800Sr PCBA

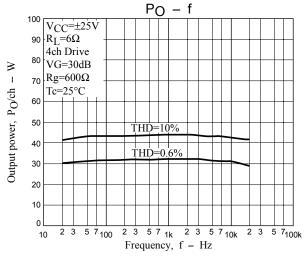
Location	on No	RATING	Compo	nent					
Location	UII INU.	KATING	STK433-840N-E/890N-E	STK433-870N-E					
Hybrid IC#1 Pin Positi	on	-	1						
R01, R02		100Ω, 1W	0						
R03, R04, R05, R06		1kΩ, 1/6W	0						
R07, R08, R09, R10, I	R11, R12, R13, R14	56KΩ, 1/6W	0						
R15, R16, R17, R18		1.8KΩ, 1/6W	0						
R19, R20, R21, R22		4.7Ω, 1/4W	0						
R23, R24, R25, R26		4.7Ω, 1W	0						
R27, R28, R29, R30		0.22Ω, 5W	0						
R32, R33, R34, R35		0.22Ω, 5W	-	0					
C01, C02, C03, C04		100μF, 100V	0						
C05, C06, C07, C08		2.2μF, 50V	0	(*1)					
C09, C10, C11, C12		470pF, 50V	0						
C13, C14, C15, C16		***pF, 50V	3рF	=					
C17, C18, C19, C20		10μF, 10V	0	(*1)					
C21, C22, C23, C24		0.1μF, 50V	0						
C25, C26, C27, C28		***pF, 50V	100p	F					
L01, L02, L03, L04		3μΗ	0						
	Tr1	VCE ≥ 50V, IC ≥ 10mA	0						
	D1	Di	0						
Stand-By	R31	1.8kΩ, 1/6W	0						
Control	R32	33kΩ, 1/6W	0						
Circuit	R33	1kΩ, 1/6W	0						
	R34	2kΩ, 1/6W	0						
	C32	33μF, 10V	0						
	•	-							
		-							
		-							
		-							

^(*1) Capacitor mark "A" side is " - " (negative).


Recommended external components


STK433-840N-E/890N-E


0111.00 0.01	. 2,0,01,2							
Parts	Recommended	Circuit aurea	Above	Below				
Location	value	Circuit purpose	Recommended value	Recommended value				
R01, R02	100Ω/1W	Resistance for Ripple filters. (Fuse resistance is recommended.	Short-through current	Short-through current				
		Ripple filter is constituted with C03, C04.)	may decrease at	may increase at high				
			high frequency.	frequency.				
R03,R04,R05,	1kΩ	Resistance for input filters.						
R06			-	•				
R07,R08,R09,	56kΩ	Input impedance is determined.	Output neutral voltage (VN) shift.				
R10			(It is referred that R07=	R11, R08=R12,				
			R09=R13, R10=R14)					
R11,R12,R13,	56kΩ	Voltage Gain (VG) is determined with R15, R16, R17, R18						
R14			=					
R15,R16,R17,	1.8kΩ	Voltage Gain (VG) is determined with R11, R12, R13, and R14.	It may oscillate.	With especially no				
R18		(As for VG, it is desirable to set up by R15, R16, R17, and R18.)	(Vg < 30dB)	problem				
R19,R20,R21,	4.7Ω	Resistance for oscillation prevention.						
R22			-	-				
R23,R24,R25,	4.7Ω/1W	Resistance for oscillation prevention.						
R26			-	-				
R27,R28,R29,	0.22Ω	Output emitter resi@stor (Metal-plate Resistor is recommended.)	Decrease of	It may cause thermal				
R30	±10%, 5W		Maximum output	runaway				
			Power					
R31	Note *4	Select Restriction resistance, for the impression voltage of #13	(Stand-By) pin' must no	exceed the maximum				
		rating.						
C01, C02	100μF/100V	Capacitor for oscillation prevention.						
		Locate near the HIC as much as possible.						
		Power supply impedance is lowered and stable operation of	-	-				
		the IC is carried out. (Electrolytic capacitor is recommended.)						
C03,C04	100μF/100V	Decoupling capacitor	The change in the Ripp	le ingredient mixed in				
		The Ripple ingredient mixed in an input side Is removed from a	an input side from a power supply line					
		power supply line. (Ripple filter is constituted with R01, R02.)						
C05,C06,C07,	2.2μF/50V	Input coupling capacitor. (For DC current prevention.)						
C08				-				
C09,C10,C11,	470pF	Input filter capacitor						
C12		A high frequency noise is reduced with the filter constituted by						
		R03, R04, R05, R06.						
C13,C14,C15,	5pF	Capacitor for oscillation prevention.	It may oscillate.					
C16								
C17,C18,C19,	10μF/10V	Negative feedback capacitor.	The voltage gain (VG)	The voltage gain (VG)				
C20		The cutoff frequency of a low cycle changes.	of low frequency is	of low frequency				
		$(fL = 1/(2\pi \cdot C17 \cdot R15))$	extended. However,	decreases.				
			the pop noise at the					
			time of a power					
			supply injection also					
			becomes large.					
C21,C22,C23,	0.1μF	Capacitor for oscillation prevention.	It may oscillate.					
C24								
C25,C26,C27,	100pF	Capacitor for oscillation prevention.	It may oscillate.					
C28			-					
L01,L02,L03,	3μΗ	Coil for oscillation prevention.	With especially	It may oscillate.				
L04			no problem					
			· · · · · · · · · · · · · · · · · · ·					


	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15								
(Size) 47.0mm×25.6mm×9.0mm						2cl	h clas	sAB/	2.00r	nm													
STK433-040N 40W/JEITA	-	-	+	0	0	0	0	+			I	N	S	N	I								
STK433-060N 50W/JEITA	Р	٧	٧	U	U	U	U	Р	S	G	Ν	F	Т	F	N								
	R	С	С	Т	Т	Т	Т	R	U	Ν	1	1	Α	1	1								
	E	С	С	1	1	1	1	Е	В	D	С	С	N	С	С								
(Size) 67.0mm×25.6mm×9.0mm				С	С	C H	С				Н	Н	D	H 2	H 2								
STK433-130N 150W/JEITA	_			H 1	H 1	2	H 2				1	1	В	2	2								
31K433-130IN 130W/JEITA	_			+	<u>'</u>	+	_						Y										
	_			-																			
	_																						
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
(Size) 64.0mm×31.1mm×9.0mm										4cl	n clas	sAB/	2.00r	nm									
STK433-840N 40W/JEITA	-	-	+	0	0	0	0	+			ı	Ν	S	Ν	ı	Ν	1	1	Ν	0	0	0	0
STK433-870N 60W/JEITA	Р	٧	٧	U	U	U	U	Р	S	G	N	F	Т	F	N	F	N	N	F	U	U	U	U
	R	С	С	Т	Т	Т	Т	R	U	Ν	1	1	Α	1	1	1	/	1	1	Т	Т	Т	Т
	E	С	С	1	/	/	/	Е	В	D	C	C	N	C	C	C	C	C	C	/	/	/	/
(Size) 78.0mm×44.1mm×9.0mm				C H	C H	C H	C H				H 1	H 1	D	H 2	H 2	H 3	H 3	H 4	H 4	C H	C H	C H	C H
STK433-890N 80W/JEITA	1			1	1	2	2				1	'	В			3	3	4	4	3	3	4	4
OTTGOO GOOT GOVVIDENTA	4			+		+	_						Y							-	+	-	+

Characteristic of Evaluation Board

A Thermal Design Tip For STK433-840N-E Amplifier

[Thermal Design Conditions]

The thermal resistance (θ c-a) of the heat-sink which manages the heat dissipation inside the Hybrid IC will be determined as follow:

(Condition 1) The case temperature (Tc) of the Hybrid IC should not exceed 125°C

$$Pd \times \theta c - a + Ta < 125^{\circ}C$$
(1)

Where Ta: the ambient temperature for the system

(Condition 2) The junction temperature of each power transistor should not exceed 150°C

$$Pd \times \theta c-a + Pd/N \times \theta j-c + Ta < 150^{\circ}C$$
 (2)

 θ j-c : the thermal resistance of each transistor (see specification)

Note that the power consumption of each power transistor is assumed to be equal to the total power dissipation (Pd) divided by the number of transistors (N).

From the formula (1) and (2), we will obtain:

$$\theta c-a < (125 - Ta)/Pd$$
(1)' $\theta c-a < (150 - Ta)/Pd - \theta j-c/N$ (2)'

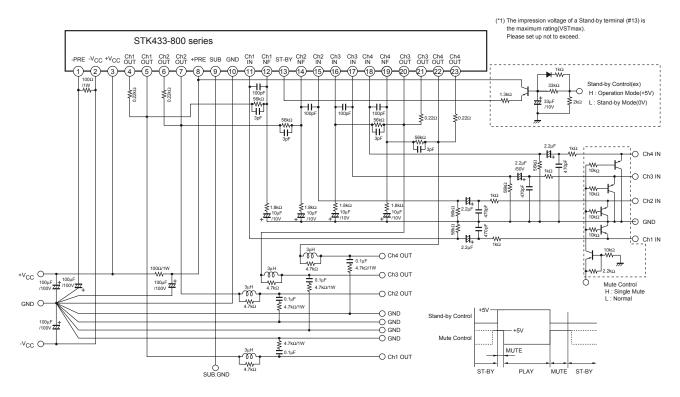
The value which satisfies above formula (1)' and (2)' will be the thermal resistance for a desired heat-sink. Note that all of the component except power transistors employed in the Hybrid IC comply with above conditions.

[Example of Thermal Design]

Generally, the power consumption of actual music signals are being estimated by the continuous signal of $1/8 P_{O}$ max. (Note that the value of $1/8 P_{O}$ max may be varied from the country to country.) (Sample of STK433-840N-E; $25W\times4ch$)

If V_{CC} is $\pm 25V$, and R_L is 6Ω , then the total power dissipation (Pd) of inside Hybrid IC is as follow;

$$Pd = 55.0W$$
 (at 3.125W output power, 1/8 of P_O max)

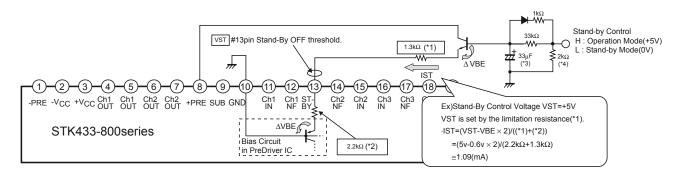

There are eight (8) transistors in Audio Section of this Hybrid IC, and thermal resistance (θ j-c) of each transistor is 4.2°C/W. If the ambient temperature (Ta) is guaranteed for 50°C, then the thermal resistance (θ c-a) of a desired heat-sink should be;

Therefore, in order to satisfy both (1)' and (2)', the thermal resistance of a desired Heat-sink will be 1.29°C/W.

[Note]

Above are reference only. The samples are operated with a constant power supply. Please verify the conditions when your system is actually implemented.

STK433-800 series Stand-by Control & Mute Control & Load-Short Protection Application



[STK433-800 series Stand-By Control Example]

[Feature]

- The pop noise generated when power supply ON/OFF by using recommendation Stand-By Control Application can be improved.
- Stand-By Control can be done by additionally adjusting the limitation resistance (*1) to the voltage such as Micro computer, the set design is easy.

(Reference circuit) STK433-800 series test circuit To Stand-By Control added +5V.

[Operation explanation]

- 1) #13pin Stand-By Control Voltage VST
 - (1) Operation Mode

SW transistor of Stand-By Circuit is turned on when $VST \ge 2.5V$ or more is impressed, and the power amplifier works.

$$ex) VST = 3.0V$$

$$VST = (*2) \times IST + 0.6V \rightarrow 3.0V = 2.2k\Omega \times IST + 0.6V$$

Therefore, IST≅1.09mA

(2) Stand-By Mode

 $VST \le 0.6V$ or less turns off the SW transistor of Stand-By Circuit by (typ 0V), and the amplifier stops.

ex)
$$VST = 0.6V$$

$$VST = (*2) \times IST + 0.6V \rightarrow 0.6V = 2.2k\Omega \times IST + 0.6V$$

Therefore, IST≅0mA

- (*3) When the power supply is turned on by giving the time constant with the capacitor (*3) when the amplifier works, the pop noise is improved.
- (*4) When capacitor (*3) is discharged when the amplifier operation stops, the constant is decided.

- SANYO Semiconductor Co.,Ltd. assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein.
- Regarding monolithic semiconductors, if you should intend to use this IC continuously under high temperature, high current, high voltage, or drastic temperature change, even if it is used within the range of absolute maximum ratings or operating conditions, there is a possibility of decrease reliability. Please contact us for a confirmation.
- SANYO Semiconductor Co.,Ltd. strives to supply high-quality high-reliability products, however, any and all semiconductor products fail or malfunction with some probability. It is possible that these probabilistic failures or malfunction could give rise to accidents or events that could endanger human lives, trouble that could give rise to smoke or fire, or accidents that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design
- In the event that any or all SANYO Semiconductor Co.,Ltd. products described or contained herein are controlled under any of applicable local export control laws and regulations, such products may require the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written consent of SANYO Semiconductor Co..Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor Co.,Ltd. product that you intend to use.
- Upon using the technical information or products described herein, neither warranty nor license shall be granted with regard to intellectual property rights or any other rights of SANYO Semiconductor Co.,Ltd. or any third party. SANYO Semiconductor Co.,Ltd. shall not be liable for any claim or suits with regard to a third party's intellectual property rights which has resulted from the use of the technical information and products mentioned above.

This catalog provides information as of August, 2012. Specifications and information herein are subject to change without notice.