T-45-07

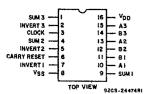
9205-17643

CD4032B, CD4038B

**FUNCTIONAL DIAGRAM** 

# **CD4032B, CD4038B Types**

# **CMOS Triple Serial Adders**


High-Voltage Types (20-Volt Rating) Positive Logic Adder - CD4032B Negative Logic Adder - CD4038B

The RCA-CD4032B and CD4038B types consist of three serial adder circuits with common CLOCK and CARRY-RESET in-puts. Each adder has provisions for two serial DATA INPUT signals and an IN-VERT command signal. When the command signal is a logical "1", the sum is complemented. Data words enter the adder with the least significant bit first; the sign bit trails. The output is the MOD 2 sum of the input bits plus the carry from the pre-vious bit position. The carry is only added at the positive-going clock transition for the CD4032B or at the negative-going clock for the CD4038B, thus, for spike-free operation the input data transitions should occur as soon as possible after the triggering edge.

The CARRY is reset to a logical "0" at the end of each word by applying a logical "1" signal to a CARRY-RESET input one-bitposition before the application of the first bit of the next word.

The CD4032B and CD4038B types are supplied in 16-lead hermetic dual-in-line ceramic packages (D and F suffixes), 16-lead dual-inline plastic packages (E suffix), 16-lead ceramic flat packages (K suffix), and in chip form (H suffix).

### CD4032B, CD4038B **TERMINAL DIAGRAM**



### Features:

- Invert inputs on all adders for sum complementing applications
- Fully static operation . . . . dc to 10 MHz (typ.)
- Single-phase clocking
- Standardized, symmetrical output characteristics
- 100% tested for quiescent current at 20 V
- Maximum input current of 1 µA at 18 V over full package-temperature range; 100 nA at 18 V and 25°C

1 V at V<sub>DD</sub> = 5 V 2 V at V<sub>DD</sub> = 10 V 2.5 V at V<sub>DD</sub> = 15 V

■ Meets all requirements of JEDEC Tentative Standard No. 13A, "Standard Specifications for Description of 'B' Series CMOS Devices'

- @ V<sub>DD</sub> = 10 V

- 5-V, 10-V, and 15-V parametric ratings
- Noise margin (over full package-temperature range)

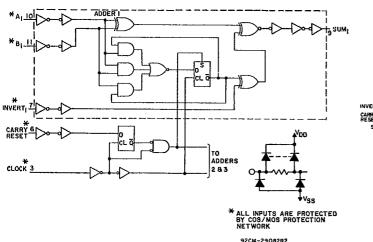
Applications:

- Serial arithmetic units
- Digital correlators
- Digital datalink computers
- Flight control computers
- Digital servo control systems

### MAXIMUM RATINGS, Absolute-Maximum Values:

DC SUPPLY-VOLTAGE RANGE, (VDD)

| Maltaga referenced to V Tairling D.                                                  | ^11 |
|--------------------------------------------------------------------------------------|-----|
| (Voltages referenced to VSS Terminal)0.5 to +2t                                      |     |
| INPUT VOLTAGE RANGE, ALL INPUTS0.5 to V <sub>DD</sub> +0.4                           | 5 V |
| DC INPUT CURRENT, ANY ONE INPUT                                                      | mΑ  |
| POWER DISSIPATION PER PACKAGE (PD):                                                  |     |
| For T <sub>A</sub> = -40 to +60°C (PACKAGE TYPE E)                                   | n₩  |
| For TA = +60 to +85°C (PACKAGE TYPE E) Derate Linearly at 12 mW/°C to 200 m          |     |
| For TA = -55 to +100°C (PACKAGE TYPES D, F, K)                                       | nW  |
| For TA = +100 to +125°C (PACKAGE TYPES D, F, K) Derate Linearly at 12 mW/°C to 200 m | nW  |
| DEVICE DISSIPATION PER OUTPUT TRANSISTOR                                             |     |
| For TA = FULL PACKAGE-TEMPERATURE RANGE (All Package Types)                          | пW  |
| OPERATING-TEMPERATURE RANGE (TA):                                                    |     |
| PACKAGE TYPES D, F, K, H55 to +125                                                   | 5°C |
| PACKAGE TYPE E                                                                       | 5°C |
| STORAGE TEMPERATURE RANGE (Tstg)65 to +150                                           |     |
| LEAD TEMPERATURE (DURING SOLDERING):                                                 |     |
| At distance 1/16 ± 1/32 inch (1.59 ± 0.79 mm) from case for 10 s max +265            | 5°C |
|                                                                                      |     |


# RECOMMENDED OPERATING CONDITIONS at TA = 25°C, Unless Otherwise Specified

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges.

| CHARACTERISTIC                                                            |                                      |               | Min.            | Max.              | UNITS |
|---------------------------------------------------------------------------|--------------------------------------|---------------|-----------------|-------------------|-------|
| Supply Voltage Range (at T <sub>A</sub> = Full Package-Temperature Range) |                                      |               | 3               | 18                | ٧     |
| Clock Input Frequency,                                                    | fCL                                  | 5<br>10<br>15 | -<br>-<br>-     | 2.5<br>5<br>7.5   | MHz   |
| Clock Input Rise or Fall Time,                                            | t <sub>F</sub> CL, t <sub>f</sub> CL | 5<br>10<br>15 | -<br>-          | 500<br>500<br>500 | μs    |
| Data Input Set-Up Time,<br>Clock to A or B Inputs                         | <sup>t</sup> SU                      | 5<br>10<br>15 | 200<br>80<br>60 | _                 | nš    |

# CD4032B, CD4038B Types:

| STATIC ELECTRICAL CHARACTERISTICS     |                    |                        |                        |                                                                                                                                                       |       |       |       |          |                  | 111  |    |  |  |  |
|---------------------------------------|--------------------|------------------------|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|-------|----------|------------------|------|----|--|--|--|
| CHARAC-<br>TERISTIC                   | CGN                | CONDITIONS             |                        | CGNDITIONS  LIMITS AT INDICATED TEMPERATURES (°C)  Values at -55, +25, +125 Apply to D, F, K, H, Packages  Values at -40, +25, +85 Apply to E Package |       |       |       |          |                  |      |    |  |  |  |
|                                       | V <sub>O</sub> (V) | V <sub>IN</sub><br>(V) | ۷ <sub>DD</sub><br>(۷) | 55                                                                                                                                                    | -40   | +85   | +125  | Min.     | +25<br>Typ.      | Max. | S  |  |  |  |
|                                       |                    | 0,5                    | 5                      | 5                                                                                                                                                     | 5     | 150   | 150   | _        | 0.04             | 5    |    |  |  |  |
| Quiescent<br>Device                   | _                  | 0,10                   | 10                     | 10                                                                                                                                                    | 10    | 300   | 300   | <u> </u> | 0.04             | 10   | ١. |  |  |  |
| Current,                              |                    | 0,15                   | 15                     | 20                                                                                                                                                    | 20    | 600   | 600   | _        | 0.04             | 20   | μΑ |  |  |  |
| IDD Max.                              | _                  | 0,20                   | 20                     | 100                                                                                                                                                   | 100   | 3000  | 3000  | _        | 0.08             | 100  |    |  |  |  |
| 0                                     | 0.4                | 0,5                    | 5                      | 0.64                                                                                                                                                  | 0.61  | 0.42  | 0.36  | 0.51     | 1                |      | ┢  |  |  |  |
| Output Low<br>(Sink) Current          | 0.5                | 0,10                   | 10                     | 1.6                                                                                                                                                   | 1.5   | 1.1   | 0.9   | 1.3      | 2.6              | _    | ĺ  |  |  |  |
| li . Adin -                           | 1.5                | 0,15                   | 15                     | 4.2                                                                                                                                                   | 4     | 2.8   | 2.4   | 3.4      | 6.8              |      |    |  |  |  |
| Outant Hinb                           | 4.6                | 0,5                    | 5                      | -0.64                                                                                                                                                 | -0.61 | -0.42 | -0.36 | -0.51    | -1               | _    | m  |  |  |  |
| Current,                              | 2.5                | 0,5                    | 5                      | -2                                                                                                                                                    | -1.8  | -1.3  | -1.15 | -1.6     | -3,2             | _    |    |  |  |  |
|                                       | 9.5                | 0,10                   | 10                     | -1.6                                                                                                                                                  | -1.5  | -1.1  | -0.9  | -1.3     | -2.6             | _    |    |  |  |  |
|                                       | 13.5               | 0,15                   | 15                     | -4.2                                                                                                                                                  | -4    | -2.8  | -2.4  | -3.4     | -6.8             | -    |    |  |  |  |
| Output Voltage:                       |                    | 0,5                    | 5                      | 0.05                                                                                                                                                  |       |       | _     | 0        | 0.05             | Γ    |    |  |  |  |
| Low-Level,                            |                    | 0,10                   | 10                     | 0.05                                                                                                                                                  |       |       |       | -        | 0                | 0.05 |    |  |  |  |
| VOL Max.                              | -                  | 0,15                   | 15                     |                                                                                                                                                       | 0.    | .05   |       | _        | 0                | 0.05 | ١, |  |  |  |
| Output                                | -                  | 0,5                    | 5                      |                                                                                                                                                       | 4.    | 95    |       | 4.95     | 5                | -    |    |  |  |  |
| Voltage;<br>High∙Level,               | t                  | 0,10                   | 10                     |                                                                                                                                                       | 9     | .95   |       | 9.95     | 10               | _    | 1  |  |  |  |
| VOH Min.                              | -                  | 0,15                   | 15                     |                                                                                                                                                       | 14.   | .95   |       | 14.95    | 15               | _    | ]  |  |  |  |
| Input Low                             | 0.5,4.5            |                        | 5                      |                                                                                                                                                       |       | 1.5   |       | -        | -                | 1.5  | T  |  |  |  |
| Voltage                               | 1,9                |                        | 10                     |                                                                                                                                                       |       | 3     |       | _        |                  | 3    | 1  |  |  |  |
| V <sub>t</sub> L Max.                 | 1.5,13.5           |                        | 15                     |                                                                                                                                                       |       | 4     |       | _        | _                | 4    | Ì١ |  |  |  |
| Input High                            | 0.5,4.5            | 1                      | 5                      |                                                                                                                                                       |       | 3.5   |       | 3.5      | _                | -    |    |  |  |  |
| Voltage,                              | 1,9                | _                      | 10                     |                                                                                                                                                       |       | 7     |       | 7        | -                | _    |    |  |  |  |
| V <sub>IH</sub> Min.                  | 1.5,13.5           | -                      | 15                     |                                                                                                                                                       |       | 11    |       | 11       | _                | _    |    |  |  |  |
| Input Current<br>I <sub>IN</sub> Max. | 1                  | 0,18                   | 18                     | ±0.1                                                                                                                                                  | ±0.1  | ±1    | ±1    | _        | ±10 <sup>5</sup> | ±0.1 | μ  |  |  |  |



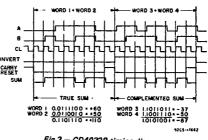
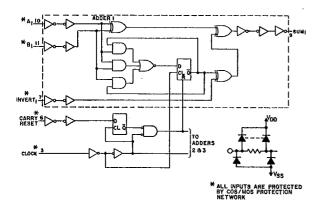



Fig.2 — CD40328 timing diagram.


Fig.1 - CD4032B logic diagram of one of three serial adders.

# **CD4032B, CD4038B Types**

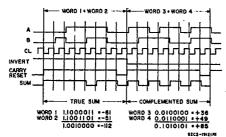
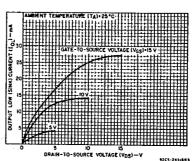
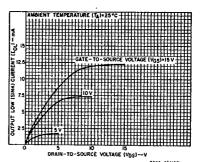
DYNAMIC ELECTRICAL CHARACTERISTICS at  $T_{A_r} = 25^{\circ}C$ , Input  $t_f$ ,  $t_f = 20$  ns,  $C_1 = 50 \, pF$ ,  $R_1 = 200 \, k\Omega$ 

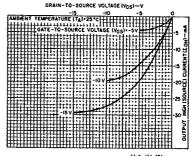
| CHARACTERISTIC                                       | TEST CONDITIONS     |          | LIMITS |      |       |  |
|------------------------------------------------------|---------------------|----------|--------|------|-------|--|
|                                                      | V <sub>DD</sub> (V) | Min.     | Тур.   | Max. | UNITS |  |
| Propagation Delay Time: tpHL, tpLH                   | 5                   | T        | 260    | 520  |       |  |
| A,B, Carry Reset, or Invert Inputs to                | 10                  | l –      | 120    | 240  | ns    |  |
| Sum Outputs                                          | 15                  | -        | 90     | 180  |       |  |
|                                                      | 5                   | T -      | 325    | 650  |       |  |
| Clack Input to Sum Outputs                           | 10                  | -        | 175    | 350  | ns    |  |
|                                                      | 15                  |          | 150    | 300  |       |  |
|                                                      | 5                   | T-       | 100    | 200  |       |  |
| Transition Time: t <sub>THL</sub> , t <sub>TLH</sub> | 10                  | -        | 50     | 100  | ns    |  |
|                                                      | 15                  | -        | 40     | 80   |       |  |
| Minimum Data Input Setup Time, tSU                   | 5                   | _        | 125    | 200  |       |  |
| Clock to A or B Inputs                               | 10                  | -        | 50     | 80   | ns    |  |
| Tidak to 7 or 5 hipats                               | 15                  | <u> </u> | 40     | 60   |       |  |
|                                                      | 5                   | 2.5      | 4.5    | _    |       |  |
| Maximum Clock Input Frequency, fCL                   | 10                  | 5        | 10     | _    | MHz   |  |
|                                                      | 15                  | 7.5      | 15     |      | · -   |  |
| •                                                    | 5                   | T =      | _      | 500  |       |  |
| Clock Input Rise or Fall Time, trCL,tfCL*            | 10                  | _        | _      | 500  | μѕ    |  |
|                                                      | 15                  |          | -      | 500  |       |  |
| Input Capacitance, CIN                               | (Any Input)         | _        | 5      | 7.5  | рF    |  |

<sup>\*</sup> If more than one unit is cascaded t<sub>rCL</sub> should be made less than or equal to the sum of the transition time and the fixed propagation delay of the output of the driving stage for the estimated capacitive load.

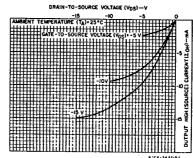


92CM-29063RI Fig. 3 - CD4038B logic diagram of one of three serial adders.



Fig.4 — CD40388 timing diagram.

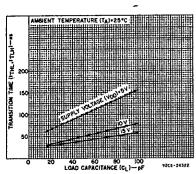



- Typical output low (sink) current characteristics.



- Minimum output low (sink) current characteristics.




- Typical output high (source) current characteristics.



- Minimum output high (source) current characteristics.

01E 13209 D

# **CD4032B, CD4038B Types**



Typical transition time as a function of load capacitance.

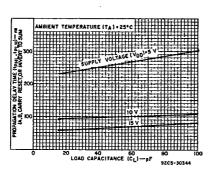
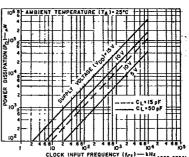




Fig. 10 - Typical propagation delay times as a function of load capacitance (A, B, carry reset or invert to SUM).



Typical dynamic power dissipation as a function of clack input frequency.

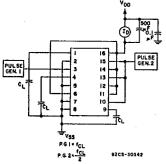



Fig. 12 - Dynamic power dissipation test circuit.

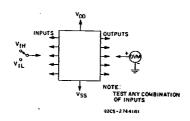



Fig. 13 - Input voltage test circuit.

188

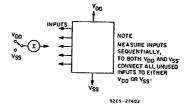



Fig. 14 - Input current test circuit.

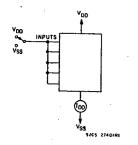
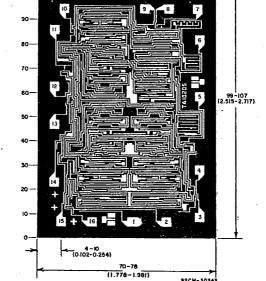
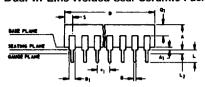
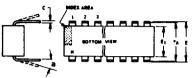




Fig. 15 - Quiescent-device current test circuit.



Dimensions and pad layout for CD4032BH; dimensions and pad layout for CD4038BH are identical.


Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils (10<sup>-3</sup> inch).


The photographs and dimensions of each CMOS chip represent a chip when it is part of the water. When the water is separated into individual chips, the angle of cleavage may very with respect to the chip face for different chips. The actual dimensions of the isolated chip, therefore, may differ slightly from the nominal dimensions shown. The user should consider a tolerance of ¬3 mils to +16 mils applicable to the nominal-dimensions shown.

D

## **Dimensional Outlines**

## **Dual-In-Line Welded-Seal Ceramic Packages**





NOTES:

BASE PLANE

NOTES:

(0.33 mm).

Refer to Rules for Dimensioning (JEDEC Publication No. 95) for Axial Lead Product Outlines.

- 10. When this device is supplied solder-dipped, the maximum lead thickness (narrow portion) will not exceed 0.013" (0.33 mm).
  2 Leads within 0.005" (0.12 mm) radius of True Position (TP) at gauge plane with maximum material condition and unit installed.
- 3. eA applies in zone L2 when unit installed
- 4. a applies to spread leads prior to installation.
- 5. N is the maximum quantity of lead positions.
- 6. N<sub>2</sub> is the quantity of allowable missing leads.

#### (D) SUFFIX (JEDEC MO-001-AD) 14-Lead Dual-In-Line Welded-Seal Ceramic Package

| SYMBOL         | IN    | CHES  | NOTE | MILLI   | METERS |
|----------------|-------|-------|------|---------|--------|
| STMBUL         | MIN.  | MAX.  | NOIE | MIN.    | MAX.   |
| Α              | 0.120 | 0.160 |      | 3.05    | 4.06   |
| A <sub>1</sub> | 0.020 | 0.065 |      | 0.51    | 1.65   |
| В              | 0.014 | 0.020 |      | 0.356   | 0.508  |
| B1             | 0.050 | 0.065 |      | 1.27    | 1.85   |
| С              | 0.008 | 0.012 | 1    | 0.204   | 0.304  |
| _ D            | 0.745 | 0.770 |      | 18.93   | 19.55  |
| E              | 0.300 | 0.325 |      | 7.62    | 8.25   |
| E1             | 0.240 | 0.260 |      | 6.10    | 6.60   |
| 61             | 0.10  | 00 TP | 2    | 2.54 TP |        |
| <b>8</b> A     | 0.30  | 10 TP | 2, 3 | 7.62 TP |        |
| L              | 0.125 | 0.150 |      | 3.18    | 3.81   |
| L2             | 0.000 | 0.030 |      | 0.000   | 0.76   |
| а              | 00    | 150   | 4    | 00      | 150    |
| N              | 14    |       | 5    | 14      |        |
| N <sub>1</sub> | 0     |       | 6    |         | 0      |
| Q1             | 0.050 | 0.085 |      | 1.27    | 2.15   |
| S              | 0.065 | 0.090 |      | 1.66    | 2.28   |

92SS-4411R2

#### (D) SUFFIX (JEDEC MO-015-AG) 24-Lead Dual-In-Line Welded-Seal Ceramic Package

| SYMBOL         | INC   | CHES  | NOTE | MILLIMETERS |       |  |
|----------------|-------|-------|------|-------------|-------|--|
| STWBOL         | MIN.  | MAX.  | NOTE | MIN.        | MAX.  |  |
| А              | 0.090 | 0.200 |      | 2.29        | 5.08  |  |
| A <sub>1</sub> | 0.020 | 0.070 | l    | 0.51        | 1.78  |  |
| В              | 0.015 | 0.020 |      | 0.381       | 0.508 |  |
| 81             | 0.045 | 0.055 | l    | 1.143       | 1.397 |  |
| С              | 0.008 | 0.012 | 1    | 0.204       | 0.304 |  |
| D              | 1.15  | 1.22  |      | 29.21       | 30.98 |  |
| E              | 0.600 | 0.625 |      | 15.24       | 15.87 |  |
| E1             | 0.480 | 0.520 |      | 12.20       | 13.20 |  |
| 81             | 0.10  | X0 TP | 2    | 2.54 TP     |       |  |
| eд             | 0.60  | 00 TP | 2,3  | 15.24 TP    |       |  |
| L              | 0.100 | 0.180 |      | 2.54        | 4.57  |  |
| L2             | 0.000 | 0.030 |      | 0.00        | 0.76  |  |
| a              | 00    | 15°   | 4    | 00          | 15°   |  |
| N              | 2     | 4     | 5    | 2           | 24    |  |
| N <sub>1</sub> | (     | 0     | 6    | ] '         | 0     |  |
| Q1             | 0.020 | 0.080 |      | 0.51        | 2.03  |  |
| S              | 0.020 | 0.060 |      | 0.51        | 1.52  |  |
| 9205.1994884   |       |       |      |             |       |  |

92CS-19948R4

#### (D) SUFFIX (JEDEC MO-001-AE) 16-Lead Dual-In-Line Welded-Seal Ceramic Package

| SYMBOL         | INC      | HES             | NOTE | MILLIN  | METERS          |  |  |
|----------------|----------|-----------------|------|---------|-----------------|--|--|
| SYMBUL         | MIN.     | MAX.            | NOIE | MIN.    | MAX.            |  |  |
| Α              | 0.120    | 0.160           |      | 3.05    | 4.06            |  |  |
| A <sub>1</sub> | 0.020    | 0.065           |      | 0.51    | 1.65            |  |  |
| 8              | 0.014    | 0.020           |      | 0.356   | 0.508           |  |  |
| B <sub>1</sub> | 0.035    | 0.065           |      | 0.89    | 1.65            |  |  |
| С              | 0.008    | 0.012           | 1    | 0.204   | 0.304           |  |  |
| D              | 0.745    | 0.785           |      | 18.93   | 19.93           |  |  |
| E              | 0.300    | 0.325           |      | 7.62    | 8.25            |  |  |
| E <sub>1</sub> | 0.240    | 0.260           |      | 6.10    | 6.60            |  |  |
| еı             | 0.100 TP |                 | 2    | 2.54    | TP              |  |  |
| e <sub>A</sub> | 0.3      | <b>0</b> 0 TP   | 2, 3 | 7.62 TP |                 |  |  |
| L              | 0.125    | 0.150           |      | 3.18    | 3.81            |  |  |
| L <sub>2</sub> | 0.000    | 0.030           |      | 0.000   | 0.76            |  |  |
| а              | 00       | 15 <sup>0</sup> | 4    | 0°      | 15 <sup>0</sup> |  |  |
| N              | •        | 16              | 5    | 1       | 6               |  |  |
| N <sub>1</sub> | 0        |                 | 6    |         | 0               |  |  |
| Q <sub>1</sub> | 0.050    | 0.085           |      | 1.27    | 2.15            |  |  |
| s              | 0.015    | 0.060           |      | 0.39    | 1.52            |  |  |
| 9255-4286.85   |          |                 |      |         |                 |  |  |

92SS-4286R5

#### (D) SUFFIX (JEDEC MO-015-AH) 28-Lead Dual-In-Line Welded-Seal Ceramic Package

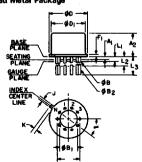
| SYMBOL         | INC   | HES   | NOTE | MILLIMETERS |       |  |
|----------------|-------|-------|------|-------------|-------|--|
| STINDUL        | MIN.  | MAX.  | NOIE | MIN.        | MAX.  |  |
| Α              | 0.090 | 0.200 |      | 2.29        | 5     |  |
| A <sub>1</sub> | 0     | 0.070 | 2    | 0           | 1.77  |  |
| В              | 0.015 | 0.020 |      | 0.381       | 0.508 |  |
| B <sub>1</sub> | 0.015 | 0.055 | l    | 0.39        | 1.39  |  |
| С              |       | 0.012 | 1    | 0.204       | 0.304 |  |
| D              | 1.380 | 1.420 |      | 35.06       | 36.06 |  |
| E              |       | 0.625 |      | 15.24       | 15.87 |  |
| Εį             | 0.485 |       |      | 12.32       | 13.08 |  |
| 81             | 0.10  | O TP  | 2    | 2.5         | 4 TP  |  |
| eΑ             |       | IO TP | 2,3  | 15.24 TP    |       |  |
| L              | 0.100 |       |      | 2.6         | 5     |  |
| L <sub>2</sub> | 0     | 0.030 |      | 0           | 0.76  |  |
| 8              | GO.   | 150   | 4    | 00          | 150   |  |
| N              |       | 8     | 5    | 28          |       |  |
| N <sub>1</sub> | 0     |       | 6    | (           | )     |  |
| Q <sub>1</sub> | 0.020 | 0.070 |      | 0.51        | 1.77  |  |
| S              | 0.040 | 0.070 |      | 1.02        | 1.77  |  |

92CM-20250R2

### TO-5 Style Package

for Axial Lead Product Outline

#### (T) SUFFIX (JEDEC MO-006-AG) 12-Lead Metal Package


and unit installed.

• e<sub>A</sub> applies in zone L<sub>2</sub> when unit installed.

• applies to spread leads prior to installation.

N is the maximum quantity of lead positions.

N<sub>1</sub> is the quantity of allowable missing leads.



Refer to Rules for Dimensioning (JEDEC Publication No. 95)

When this device is supplied solder-dipped, the maximum lead thickness (narrow portion) will not exceed 0.013"

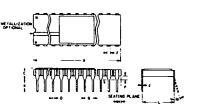
(1.35 mm).
Leads within 0.005" (0.12 mm) radius of True Position (TP) at gauge plane with maximum material condition and unit installed.

| SYMBOL          | INC    | HES   | NOTE | MILLIMETERS |       |  |
|-----------------|--------|-------|------|-------------|-------|--|
| STMBUL          | MIN.   | MAX.  | HOIL | MIN.        | MAX.  |  |
| a               | 0.2    | 230   | 2    | 5.84        | I TP  |  |
| Α1              | 0      | 0     |      | · 0         | 0     |  |
| A <sub>2</sub>  | 0.165  | 0.185 |      | 4.19        | 4.70  |  |
| ΦB              | 0.016  | 0.019 | 3.   | 0.407       | 0.482 |  |
| φB <sub>1</sub> | 0      | 0     |      | 0           | 0     |  |
| φB <sub>2</sub> | 0.016  | 0.021 | 3    | 0.407       | 0.533 |  |
| φD              | 0.335  | 0.370 |      | 8.51        | 9.39  |  |
| φDη             | 0.305  | 0.335 |      | 7.75        | 8.50  |  |
| F <sub>1</sub>  | 0.020  | 0.040 |      | 0.51        | 1.01  |  |
| j               | 0.028  | 0.034 |      | 0.712       | 0.863 |  |
| k               | 0.029  | 0.045 | 4    | 0.74        | 1.14  |  |
| L <sub>1</sub>  | 0.000  | 0.050 | 3    | 0.00        | 1.27  |  |
| L2              | 0.250  | 0.500 | 3    | 6.4         | 12.7  |  |
| L <sub>3</sub>  | 0.500  | 0.562 | 3    | 12.7        | 14.27 |  |
| 8               | 30° TP |       |      | 30°         | TP    |  |
| N               | 12     |       | 6    | 12          |       |  |
| N <sub>1</sub>  |        | 1     | 5    |             | 1     |  |

#### NOTES:

- 1. Refer to Rules for Dimensioning Axial Lead Product Out-
- Leads at gauge plane within 0.007" (0.178 mm) radius of True Position (TP) at maximum material condition.
- φ8 applies between L<sub>1</sub> and L<sub>2</sub>. φ8<sub>2</sub> applies between L<sub>2</sub> and 0.500" (12.70 mm) from seating plane. Diameter is uncontrolled in L<sub>1</sub> and beyond 0.500" (12.70 mm).
- 4. Measure from Max.  $\phi$ D.
- 5. N<sub>1</sub> is the quantity of allowable missing le
- 6. N is the maximum quantity of lead positions.

702


E-08

92CS-19774

The second secon THE PROPERTY OF THE PROPERTY O

# **Dimensional Outlines (Cont'd)**

### **DUAL-IN-LINE SIDE-BRAZED CERAMIC PACKAGES**



- NOTES:

  1. Leads within 0.005" (0.13 mm)-radius of True Position at maximum material condition.

  2. Dimension "L" to center of leads when formed parallel.

  3. When this device is supplied solder-dipped, the maximum lead thickness (narrow portion) will not exceed 0.013" (0.33 mm),

(D) SUFFIX 18-Lead Dust-in-Line Side-Brazed Ceramic Package

| SYMBOL | INCHES |       | NOTE | MILLIM     | ETERS  |  |
|--------|--------|-------|------|------------|--------|--|
|        | MIN.   | MAX.  |      | MIN.       | MAX.   |  |
| А      | 0.890  | 0.915 |      | 22.606     | 23.241 |  |
| _ с    | 1      | 0.200 |      | _          | 5.080  |  |
| D      | 0.015  | 0.021 |      | 0.381      | 0.533  |  |
| F      | 0.054  | REF.  | 1    | 1.371 REF. |        |  |
| G      | 0.100  | BSC   | 1    | 2.54 BSC   |        |  |
| Н      | 0.035  | 0.065 |      | 0.889      | 1.651  |  |
| J      | 0.008  | 0.012 | 3    | 0.203      | 0.304  |  |
| К      | 0.125  | 0.150 |      | 3.175      | 3.810  |  |
| L      | 0.290  | 0.310 | 2    | 7.366      | 7.874  |  |
| M      | 00     | 150   |      | 00         | 150    |  |
| Р      | 0.025  | 0.045 |      | 0.635      | 1.143  |  |
| N      | 18     |       |      |            | 18     |  |

92CS-27231R1

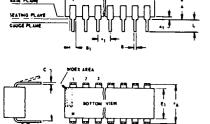
(D) SUFFIX 22-Lead Dual-In-Line Side-Brazed Ceramic Package

| SYMBOL  | INCHES |       | NOTE | MILLE | METERS |
|---------|--------|-------|------|-------|--------|
| STINDOL | MIN.   | MAX.  | NOIE | MIN.  | . MAX. |
| Α       | 1.065  | 1.100 |      | 27.05 | 27.94  |
| С       | 0.085  | 0.145 |      | 2.16  | 3.68   |
| D       | 0.017  | 0.023 |      | 0.43  | 0.56   |
| F       | 0.040  | REF.  | 1    | 1.0   | REF.   |
| G       | 0.100  | BSC   | 1    | 2.54  | BSC    |
| H       | 0.030  | 0.070 |      | 0.76  | 1.78   |
| J       | 0.008  | 0.012 | 3    | 0.20  | 0.30   |
| К       | 0.125  | 0.175 |      | 3.18  | 4.45   |
| L       | 0.380  | 0.420 | 2    | 9.65  | 10.67  |
| M       | _      | 70    | †    |       | 70     |
| P       | 0.025  | 0.050 | 1    | 0.64  | 1.27   |
| N       | 2      | 2     |      |       | 22     |

92CS-25186R2

#### (D) SUFFIX 24-Lead Dual-In-Line Side-Brazed Ceramic Package

| SYMBOL    | INC   | HES   | NOTE  | MILLIMETERS |       |
|-----------|-------|-------|-------|-------------|-------|
| O I MIGOL | MIN.  | MAX.  | INOTE | MIN.        | MAX.  |
| Α         | 1.180 | 1.220 |       | 29.98       | 30.98 |
| С         | 0.085 | 0.145 |       | 2.16        | 3.68  |
| 0         | 0.015 | 0.023 |       | 0.39        | 0.58  |
| F         | 0.044 | REF.  |       | 1.02        | REF.  |
| G         | 0.10  | BSC   | 1     | 2.54 BSC    |       |
| H         | 0.030 | 0.070 |       | 0.77        | 1.77  |
| J         | 0.008 | 0.012 | 3     | 0.21        | 0.30  |
| К         | 0.125 | 0.175 |       | 3.18        | 4.44  |
| 7         | 0.580 | 0.620 | 2     | 14.74       | 15.74 |
| М         | _     | . 7°  |       | _           | 7°    |
| Р         | 0.025 | 0.050 |       | 0.64        | 1.27  |
| N         | - 1   | 24    |       | 1           | 4     |


92CS-30986R1

(D) SUFFIX 40-Lead Dual-In-Line Side-Brazed Ceramic Package

| SYMBOL | INC        | HES   | NOTE | MILLIMETERS |       |
|--------|------------|-------|------|-------------|-------|
|        | MIN.       | MAX.  |      | MIN.        | MAX.  |
| Α      | 1.980      | 2.020 |      | 50.30       | 51.30 |
| С      | 0.095      | 0.155 |      | 2.43        | 3,93  |
| D      | 0.017      | 0.023 |      | 0.43        | 0.56  |
| F      | 0.050 REF. |       |      | 1.27 REF.   |       |
| G      | 0.100      | BSC   | 1    | 2.54 BSC    |       |
| Н      | 0.030      | 0.070 |      | 0.76        | 1.78  |
| J      | 0.008      | 0.012 | 3    | 0.20        | 0,30  |
| K      | 0.125      | 0.175 | i —  | 3.18        | 4.45  |
| Ĺ      | 0.580      | 0.620 | 2    | 14.74       | 15.74 |
| М      | _          | 70    |      | -           | 70    |
| P      | 0.025      | 0.050 |      | 0.64        | 1.27  |
| N      |            | 10    |      | 4           | 0     |

## **Dual-In-Line Plastic and Frit-Seal Ceramic Packages**





| SYMBOL         | INC   | IES    | NOTE | MILLIMETERS |       |  |
|----------------|-------|--------|------|-------------|-------|--|
| STMBUL         | MIN.  | MAX.   | NOTE | MIN.        | MAX.  |  |
| A              | 0.155 | 0.200  |      | 3.94        | 5.08  |  |
| A <sub>1</sub> | 0.020 | 0.050  |      | 0.508       | 1.27  |  |
| В              | 0.014 | 0.020  |      | 0.356       | 0.508 |  |
| 81             | 0.035 | 0.065  |      | 0.889       | 1.65  |  |
| С              | 0.008 | 0.012  | 1    | 0.203       | 0.304 |  |
| D              | 0.370 | 0.400  |      | 9.40        | 10.16 |  |
| E              | 0.300 | 0.326  |      | 7.62        | 8.25  |  |
| Εį             | 0.240 | 0.260  |      | 6.10        | 6.60  |  |
| 81             | 0.    | 100 TP | 2    | 2.54        | TP    |  |
| 8A             | 0.    | 300 TP | 2, 3 | 7.62 TP     |       |  |
| L              | 0.125 | 0.150  |      | 3.18        | 3.81  |  |
| L <sub>2</sub> | 0.000 | 0.030  |      | 0.000       | 0.762 |  |
| a .            | 0     | 15     | 4    | 0           | 15    |  |
| N              |       | 8      | 5    |             | 8     |  |
| N <sub>1</sub> | 0     |        | 6    | l           | 0     |  |
| 01             | 0.040 | 0.075  |      | 1.02        | 1.90  |  |
| \$             | 0.015 | 0.060  |      | 0.381       | 1.52  |  |
|                |       |        |      |             |       |  |

92CS-24026 RI

#### NOTES:

Refer to Rules for Dimensioning (JEDEC Publication No. 95) for Axial Lead Product Outlines.

- When this device is supplied solder-dipped, the maxim thickness (narrow portion) will not exceed 0.013".
- 2. Leads within 0.005" (0.12 mm) radius of True Position (TP) at guage plane with maximum material condition and unit installed.
- 3.  $e_A$  applies in zone  $L_2$  when unit installed.
- 4. a applies to spread leads prior to installation.
- 5. N is the maximum quantity of lead positions.
- 6. N<sub>1</sub> is the quantity of allowable missing leads.

MILLIMETERS

MAX.

5.08

1.27

0.508

1.65

0.304

19.55

8.25

6.60

3.81

0.76

1.90

2.28

92CS-30830

150

2.54 TP

7.62 TP

MIN.

3.94

1.27

0.204

18.93

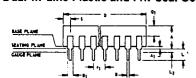
6.10

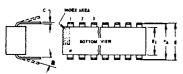
3.18

0.000

1.02

1.66


00


01E 13756

T-90-20

# **Dimensional Outlines (Cont'd)**

# Dual-in-Line Plastic and Frit-Seal Ceramic Packages (Cont'd)





NOTES:

Refer to Rules for Dimensioning (JEDEC Publication No. 95) for Axial Lead Product Outline

- 1. When this device is supplied solder dipped, the maximum lead
- thickness (narrow portion) will not exceed 0.013" (0.33 mm).

  2. Leads within 0.005" (0.12 mm) radius of True Position (TP) at gauge plane with maximum material condition and unit installed.
- 3. eA applies in zone L2 when unit installed.
- 4. a applies to spread leads prior to installation.
- 5. N is the maximum quantity of lead positions.
- 8. N<sub>1</sub> is the quantity of allowable missing leads,

INCHES

MIN. MAX. 0.155 0.200 0.020 0.050 0.014 0.020

0.035 0.065

0.008 0.012 0.845 0.886

0.240 0.260

0.125 0.150

0° 15°

0.015 0.060

0.100 TP 0.300 TP

(E) SUFFIX 18-Lead Dual-In-Line

Plastic Package

SYMBOL

81

Ç

Εı

61

8A

L

N

### (E) SUFFIX 22-Lead Dual-In-Line

| NOTE | MILLIN | ,     |     |
|------|--------|-------|-----|
|      | MIN.   | MAX.  | F   |
|      | 3.94   | 5.08  |     |
|      | 0.508  | 1.27  |     |
|      | 0.356  | 0.508 | l L |
|      | 0.89   | 1.65  |     |
| 1    | 0.204  | 0.304 | -   |
|      | 21.47  | 22.47 |     |
|      | 6.10   | 6.60  | . ⊦ |
| 2    | 2.5    | 54 TP |     |
| 2,3  | 7.6    | 62 TP | l 1 |
|      | 3.18   | 3.81  | l L |
| 4    | 0°     | 15°   | -   |
| 5    | 1      |       |     |
| 6    | (      | )     | l 1 |
|      | 0.39   | 1.52  | L   |

9208-30630

|                | nage  |       |      |             |       |
|----------------|-------|-------|------|-------------|-------|
| SYMBOL         | INC   | HES   | NOTE | MILLIMETERS |       |
| STMBOL         | MIN.  | MAX.  | NOTE | MIN.        | MAX.  |
| Α              | 0.155 | 0.200 |      | 3.94        | 5.08  |
| A1             | 0.020 | 0.050 |      | 0.508       | 1.27  |
| В              | 0.015 | 0.020 |      | 0.381       | 0.508 |
| B <sub>1</sub> | 0.035 | 0.065 |      | 0.89        | 1.65  |
| С              | 0.008 | 0.012 | 1    | 0.204       | 0.304 |
| D              |       | 1.120 | _    |             | 28.44 |
| E              | 0.390 | 0.420 | ]    | 9,91        | 10.66 |
| ٤1             | 0.345 | 0.355 | 1    | 8.77        | 9.01  |
| 01             | 0.10  | O TP  | 2    | 2.5         | 4 TP  |
| •A_            | 0.40  | O TP  | 2, 3 | 10.16 TP    |       |
| Ľ              | 0.125 | 0.150 |      | 3.18        | 3.81  |
| L <sub>2</sub> | 0     | 0.030 | 1    | 0           | 0.762 |
| a              | 20    | 15°   | 4    | 20          | 150   |
| N              | 2     | 2     | 5    |             | 22    |
| N <sub>1</sub> | 0     |       | 6    | İ           | 0     |
| Q <sub>1</sub> | 0.055 | 0.085 |      | 1.40        | 2.15  |
| S              | 0.015 | 0.060 |      | 0.381       | 1.27  |

(E) and (F) SUFFIXES (JEDEC MO-001-AB) 14-Lead Dual-in-Line Plastic or

NOTE

Frit-Seal Ceramic Package INCHES

0.155

0.020

0.014

0.050

0.008

0.745

0.300

0.240

0.125

00 150

0.040

0.065

MIN. MAX.

0.200

0.060

0.020

0.065

0.012

0.770

0.325

0.260

0.150

0.075

0.090

0.100 TP

0.300 TP

0.000 0.030

O

SYMBOL

Αţ

8

81

C

E١

-1

L

L2

N<sub>1</sub>

Q1



| BASE PLANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FASE PLANE   S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| SEATING PLANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| / / / / / / / / / / / / / / / / / / /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MOEX APPA IN U U U U U U U U U U U U U U U U U U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| \ \ \ -0\ -0\ -0\ -0\ \ \ \ \ \ \ \ \ \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| المراجعة الم |
| Contractor Contractor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 123 ((   1 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| *A BOTTOM // VIEW E1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ╼╦┚ <u>╏╻┞╬┰┰┰┰┩</u> ┖┰┰┰┰┯┩╌ <u>╄</u> ╏                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| , notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| NOTES.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

| Rafer to Rules for Dimensioning (JEDEC Publication No | 95) |
|-------------------------------------------------------|-----|
| for Axial Lead Product Outlines.                      |     |
|                                                       |     |

- N is the maximum quantity of lead positions.
   N<sub>3</sub> is the quantity of allowable missing leads.

|   | guage plane with maximum material condition and unit installed |
|---|----------------------------------------------------------------|
| Ļ | eg applies in zone L2 when unit installed.                     |
| L | a applies to spread leads prior to installation.               |

| SYMBOL INCHES  |       |       | NOTE     | MILLIMETERS |       |  |  |
|----------------|-------|-------|----------|-------------|-------|--|--|
| 314100         | MIN.  | MAX.  | NOTE     | MIN.        | MAX.  |  |  |
| Α              | 0.120 | 0.250 |          | 3,10        | 6.30  |  |  |
| A1             | 0.020 | 0.070 |          | 0.51        | 1.77  |  |  |
| В              | 0.016 | 0.020 |          | 0.407       | 0.508 |  |  |
| 81             | 0.028 | 0.070 | L.       | 0.72        | 1.77  |  |  |
| C              | 800.0 |       | 1        | 0.204       | 0.304 |  |  |
| D              | 1.20  | 1.29  | L        | 30.48       | 32.76 |  |  |
| E              |       | 0.625 |          | 15.24       | 15.87 |  |  |
| Εţ             | 0.516 | 0.580 | <u> </u> | 13.09       | 14.73 |  |  |
| 61             | 0.10  | O TP  | 2        | 2.54 TP     |       |  |  |
| θД             | 0.60  | 0 TP  | 2,3      | 15.2        | 4 TP  |  |  |
| L              |       | 0.200 |          | 2.54        | 5.00  |  |  |
| L2             | 0.000 | 0.030 |          | 0.00        | 0.76  |  |  |
| а              | 00    | 150   | 4        | 00          | 150   |  |  |
| N              |       | 4     | 5        | 2           |       |  |  |
| N <sub>1</sub> | 0     |       | 6        | 0           | )     |  |  |
| 01             |       | 0.075 |          | 1.02        | 1.90  |  |  |
| S              | 0.040 | 0.100 |          | 1.02        | 2.54  |  |  |
| 02052603003    |       |       |          |             |       |  |  |

92CS26938R2

(E) and (F) SUFFIXES (JEDEC MO-001-AC) 16-Lead Dual-In-Line Plastic or Frit-Seal Ceramic Package

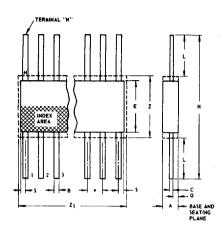
| SYMBOL         | INCHES   |                 | NOTE | MILLIMETERS |                 |
|----------------|----------|-----------------|------|-------------|-----------------|
|                | MIN.     | MAX.            |      | MIN.        | MAX.            |
| A              | 0.155    | 0.200           |      | 3.94        | 5.08            |
| Α <sub>1</sub> | 0.020    | 0.050           |      | 0.51        | 1.27            |
| В              | 0.014    | 0.020           |      | 0.356       | 0.508           |
| 81             | 0.035    | 0.065           |      | 0.89        | 1.65            |
| С              | 0.008    | 0.012           | 1    | 0,204       | 0.304           |
| D              | 0.745    | 0.785           |      | 18.93       | 19.93           |
| E              | 0.300    | 0.325           |      | 7.62        | 8.25            |
| E۱             | 0.240    | 0.260           |      | 6.10        | 6.60            |
| eş             | 0.100 TP |                 | 2    | 2.54 TP     |                 |
| e <sub>A</sub> | 0.3      | 00 TP           | 2, 3 | 7.62 TP     |                 |
| L              | 0.125    | 0.150           |      | 3.18        | 3.81            |
| L <sub>2</sub> | 0.000    | 0.030           |      | 0.000       | 0.76            |
| а              | 00       | 15 <sup>0</sup> | 4    | 00          | 15 <sup>0</sup> |
| . 8            | 16       |                 | 5    | 16          |                 |
| N <sub>1</sub> | 0        |                 | 6    |             | 0               |
| 01             | 0.040    | 0.075           |      | 1.02        | 1.90            |
| S              | 0.015    | 0.060           |      | 0,39        | 1.52            |

(F) SUFFIX (JEDEC MO-001-AG) 16-Lead Dual-In-Line Frit-Seal Ceramic Package

| SYMBOL                |       | CHES  | NOTE | MILLIM  | ETERS |
|-----------------------|-------|-------|------|---------|-------|
| GIMBOL                | MIN.  | MAX.  | NOTE | MIN.    | MAX.  |
| Α                     | 0.165 | 0.210 |      | 4.20    | 5.33  |
| A <sub>1</sub>        | 0.015 | 0.045 |      | 0.381   | 1.14  |
| 8                     | 0.015 | 0.020 |      | 0,381   | 0.508 |
| B <sub>1</sub>        | 0.045 | 0.070 |      | 1.15    | .1.77 |
| С                     | 0.009 | 0.011 | 1    | 0.229   | 0,279 |
| D                     | 0.750 | 0.795 |      | 19.05   | 20,19 |
| E                     | 0.295 | 0.325 |      | 7.50    | 8.25  |
| Εį                    | 0.245 | 0.300 |      | 6.23    | 7.62  |
| e1                    | 0,1   | 00 TP | 2    | 2.54 TP |       |
| θA                    | 0.3   | 9T 00 | 2, 3 | 7.62    | TP    |
| 7                     | 0.120 | 0.160 |      | 3.05    | 4.06  |
| L <sub>2</sub>        | 0.000 | 0.030 |      | 0.000   | 0,76  |
| а                     | 20    | 150   | 4    | 20      | 150   |
| N                     |       | 16    | 5    | 1       | 6     |
| N <sub>1</sub>        |       | 0.    | 6    | (       | ).    |
| <b>α</b> <sub>1</sub> |       | 0.080 |      | 1.27    | 2.03  |
| S                     | 0.010 | 0.060 | L    | 0.254   | 1.52  |
| 92CM-22284R1          |       |       |      |         |       |

#### (E) SUFFIX 40-Lead Dual-In-Line Plastic Package

| SYMBOL         | INC   | INCHES |      | MILLIN   | IETERS |
|----------------|-------|--------|------|----------|--------|
| STMBUL         | MIN.  | MAX.   | NOTE | MIN.     | MAX.   |
| Α              | 0.120 | 0.250  |      | 3.10     | 6.30   |
| A1             | 0.020 | 0.070  |      | 0.51     | 1.77   |
| В              | 0.016 | 0.020  |      | 0.407    | 0.508  |
| Bı             | 0.028 | 0.070  |      | 0.72     | 1.77   |
| С              | 0.008 | 0.012  | 1    | 0.204    | 0.304  |
| D              | 2,000 | 2.090  | L    | 50.80    | 53.09  |
| E <sub>1</sub> | 0,515 | 0.580  |      | 13.09    | 14.73  |
| 01             | 0.10  | O TP   | 2    | 2.54 TP  |        |
| 8A             | 0.60  | 10 TP  | 2,3  | 15.24 TP |        |
| Ļ              |       | 0,200  |      | 2.54     | 5.00   |
| L2             | 0.000 | 0.030  | ŀ    | 0.00     | 0.76   |
| а              | 00    | 150    | 4    | Co       | 150    |
| N              | 4     | 0      | 5    | 40       |        |
| N <sub>1</sub> | 0     |        | 6    | 0        | )      |
| Q <sub>1</sub> | 0.065 | 0.095  | I    | 1.66     | 2.41   |
| S              | 0.040 | 0.100  | ł    | 1.02     | 2.54   |


92CS-30959

T-90-20

# **Dimensional Outlines (Cont'd)**

### **Ceramic Flat Packs**

### (K) SUFFIX (JEDEC MO-004-AF) 14-Lead



| SYMBOL         | INCHES   |       | NOTE | MILLIMETERS |       |
|----------------|----------|-------|------|-------------|-------|
|                | MIN.     | MAX.  | NOTE | MIN.        | MAX.  |
| Α              | 0.008    | 0.100 |      | 0.21        | 2.54  |
| В              | 0.015    | 0.019 | 1    | 0.381       | 0.482 |
| С              | 0.003    | 0.006 | 1    | 0.077       | 0.152 |
| e              | 0.050 TP |       | 2    | 1.27 TP     |       |
| E              | 0.200    | 0.300 |      | 5.1         | 7.6   |
| н              | 0.600    | 1.000 |      | 15.3        | 25.4  |
| L              | 0.150    | 0.350 |      | 3.9         | 8.8   |
| N              | 14       |       | 3    | 14          |       |
| a              | 0.005    | 0.050 |      | 0.13        | 1.27  |
| S              | 0.000    | 0.050 | 1    | 0.00        | 1.27  |
| Z              | 0.300    |       | 4    | 7.62        |       |
| Z <sub>1</sub> | 0.400    |       | 4    | 10.16       |       |
| 92S8-4300R3    |          |       |      |             |       |

#### NOTES:

- 1. Refer to JEDEC Publication No. 95 for Rules for Dimensioning Peripheral Lead Outlines.
- 2. Leads within 0.005" (0.12 mm) radius of True Position (TP) at maximum material condition.
- 3. N is the maximum quantity of lead positions.
- Z and Z<sub>1</sub> determine a zone within which all body and lead irregularities lie.

# (K) SUFFIX (JEDEC MO-004-AG)

| SYMBOL         | INCHES   |       | NOTE | MILLIMETERS |       |
|----------------|----------|-------|------|-------------|-------|
|                | MIN.     | MAX.  | NUIE | MIN.        | MAX.  |
| Α              | 0.008    | 0.100 |      | 0.21        | 2.54  |
| В              | 0.015    | 0.019 | 1    | 0.381       | 0.482 |
| С              | 0.003    | 0.006 | 1    | 0.077       | 0.152 |
| e              | 0.050 TP |       | 2    | 1.27 TP     |       |
| E              | 0.200    | 0.300 |      | 5.1         | 7.6   |
| н              | 0.600    | 1.000 |      | 15.3        | 25.4  |
| L              | 0.150    | 0.350 |      | 3.9         | 8.8   |
| N              | 16       |       | 3    | 16          |       |
| Q              | 0.005    | 0.050 |      | 0.13        | 1.27  |
| S              | 0.000    | 0.025 |      | 0.00        | 0.63  |
| z              | 0.300    |       | 4    | 7.62        |       |
| Z <sub>1</sub> | 9.400    |       | 4    | 10.16       |       |

(K) SUFFIX 24-Lead

| SYMBOL | INCHES   |       | NOTE | MILLIMETERS |       |
|--------|----------|-------|------|-------------|-------|
|        | MIN.     | MAX.  | NULE | MIN.        | MAX.  |
| A      | 0.075    | 0.120 |      | 1.91        | 3.04  |
| В      | 0.018    | 0.022 | 1    | 0.458       | 0.558 |
| С      | 0.004    | 0.007 | 1    | 0.102       | 0.177 |
| e      | 0.050 TP |       | 2    | 1.27 TP     |       |
| E      | 0.600    | 0.700 |      | 15.24       | 17.78 |
| Н      | 1.150    | 1.350 |      | 29.21       | 34.29 |
| L      | 0.225    | 0.325 |      | 5.72        | 8.25  |
| N      | 24       |       | 3    | 24          |       |
| ۵      | 0.035    | 0.070 |      | 0.89        | 1.77  |
| S      | 0.060    | 0.110 | 1    | 1.53        | 2.79  |
| Z      | 0.700    |       | 4    | 17.78       |       |
| Z1_    | 0.750    |       | 4    | 19.05       |       |

92CS-19949R2

(K) SUFFIX 28-Lead

| SYMBOL         | INCHES   |       | NOTE | MILLIMETERS |       |
|----------------|----------|-------|------|-------------|-------|
|                | MIN.     | MAX.  | NOTE | MIN.        | MAX.  |
| Α              | 0.075    | 0.120 |      | 1.91        | 3.04  |
| В              | 0.018    | 0.022 | 1    | 0.458       | 0.558 |
| С              | 0.004    | 0.007 | 1    | 0.102       | 0.177 |
| 6              | 0.050 TP |       | 2    | 1,27 TP     |       |
| E              | 0.600    | 0.700 |      | 15.24       | 17.78 |
| H              | 1.150    | 1.350 |      | 29.21       | 34.29 |
| L              | 0.225    | 0.325 |      | 5.72        | 8.25  |
| N              | 28       |       | 3    | 28          |       |
| a              | 0.035    | 0.070 | Γ    | 0.89        | 1.77  |
| S              | 0        | 0.060 | 1    | 0           | 1.53  |
| Z              | 0.700    |       | 4    | 17.78       |       |
| Z <sub>1</sub> | 0.750    |       | 4    | 19.05       |       |

9205-20972

----