FAIRCHILD

SEMICONDUCTOR

CD4014BC 8-Stage Static Shift Register

General Description

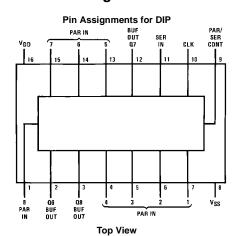
The CD4014BC is an 8-stage parallel input/serial output shift register. A parallel/serial control input enables individual JAM inputs to each of 8 stages. Q outputs are available from the sixth, seventh and eighth stages. All outputs have equal source and sink current capabilities and conform to standard "B" series output drive.

When the parallel/serial control input is in the logical "0" state, data is serially shifted into the register synchronously with the positive transition of the clock. When the parallel/ serial control input is in the logical "1" state, data is jammed into each stage of the register synchronously with the positive transition of the clock.

All inputs are protected against static discharge with diodes to $\rm V_{DD}$ and $\rm V_{SS}.$

Features

■ Wide supply voltage range: 3.0V to 15V


- High noise immunity: 0.45 V_{DD} (typ.)
- Low power TTL compatibility: Fan out of 2 driving 74L or 1 driving 74LS
- 5V–10V–15V parametric ratings
- Symmetrical output characteristics
- Maximum input leakage:

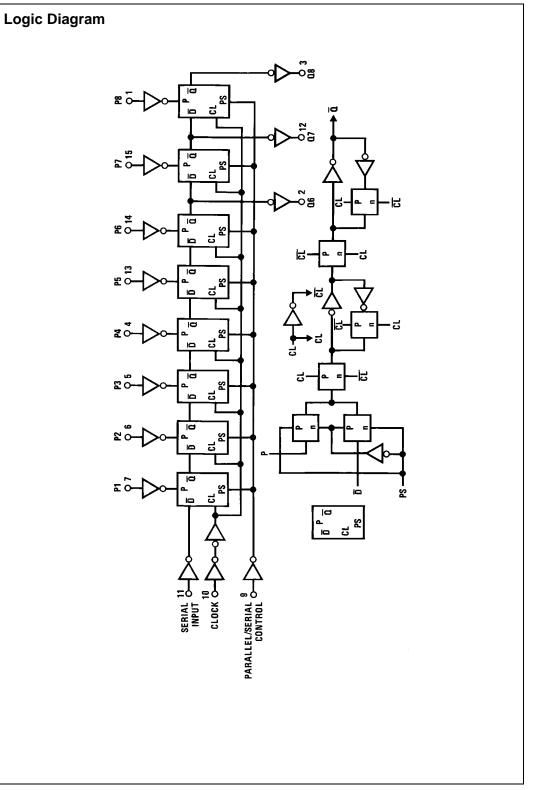
 $1 \,\mu A$ at 15V over full temperature range

Ordering Code:

Order Number	Package Number	Package Description			
CD4014BCM	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow			
CD4014BCN	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-100, 0.300" Wide			
Devices also available in Tape and Reel. Specify by appending the suffix letter "x" to the ordering code.					

Connection Diagram

Truth Table


CL (Note 1)	Serial Input	Parallel/ Serial Control	PI 1	Pl n	Q1 (Internal)	Q _n
~	Х	1	0	0	0	0
~	Х	1	1	0	1	0
~	х	1	0	1	0	1
~	х	1	1	1	1	1
~	0	0	Х	Х	0	Q_{n-1}
~	1	0	Х	Х	1	Q_{n-1}
~	Х	Х	Х	Х	Q1	Q _n

X = Don't care case No Change

Note 1: Level change

© 1999 Fairchild Semiconductor Corporation DS005947.prf

Absolute Maximum Ratings(Note 2)

(Note 3)		Conditions (Note 3)
Supply Voltage (V _{DD}) Input Voltage (V _{IN})	$-0.5V$ to $+18V$ -0.5 to V_{DD} + 0.5V	Supply Voltage (V _{DD}) Input Voltage (V _{IN})
Storage Temperature Range (T _S)	-65°C to +150°C	Operating Temperature Range
Power Dissipation (P _D) Dual-In-Line	700 mW	Note 2: "Absolute Maximum Ratings" a safety of the device cannot be guarante ture Range" they are not meant to imp
Small Outline Lead Temperature (T _L)	500 mW	ated at these limits. The table of "E conditions for actual device operation. Note 3: Voc = 0V unless otherwise specific terms of the table of table

Recommended Operating onditions (Note 3)

upply Voltage (V_{DD}) 3.0V to 15V 0 to V_{DD} nput Voltage (V_{IN})

CD4014BC

Operating Temperature Range (T_A) $-40^{\circ}C$ to $+85^{\circ}C$ te 2: "Absolute Maximum Ratings" are those values beyond which the fety of the device cannot be guaranteed. Except for "Operating Tempera-e Range" they are not meant to imply that the devices should be opered at these limits. The table of "Electrical Characteristics" provides

Note 3: $V_{SS} = 0V$ unless otherwise specified.

DC Electrical Characteristics (Note 3)

(Soldering, 10 seconds)

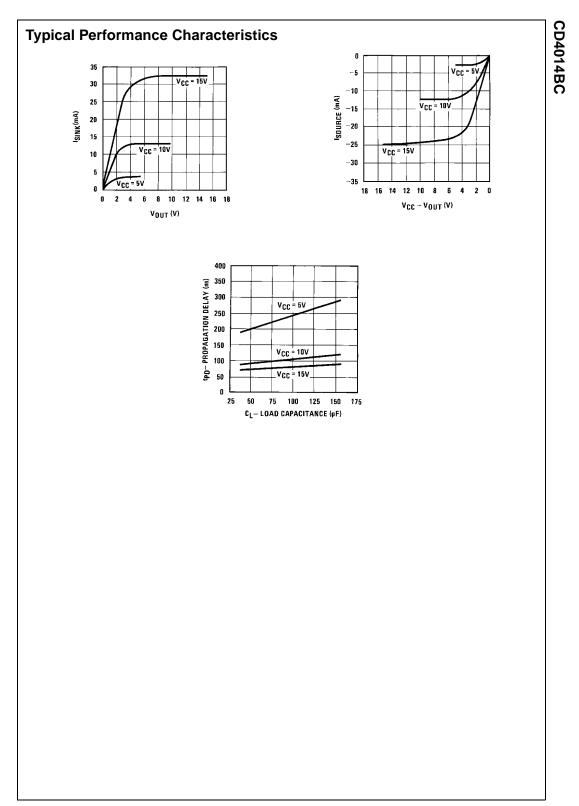
Symbol	Parameter	Conditions		−40°C		+25°C			+85°C		Units
Symbol	Parameter			Min	Max	Min	Тур	Max	Min	Max	Units
I _{DD}	Quiescent Device	$V_{DD} = 5V, V_{IN} = V$	/ _{DD} or V _{SS}		20		0.1	20		150	μA
	Current	$V_{DD} = 10V, V_{IN} =$	V_{DD} or V_{SS}		40		0.2	40		300	μΑ
		$V_{DD} = 15V, V_{IN} =$	V_{DD} or V_{SS}		80		0.3	80		600	μΑ
V _{OL}	LOW Level	$V_{DD} = 5V$			0.05		0	0.05		0.05	V
	Output Voltage	$V_{DD} = 10V$	$ I_0 < 1 \ \mu A$		0.05		0	0.05		0.05	V
		$V_{DD} = 15V$			0.05		0	0.05		0.05	V
V _{OH}	HIGH Level	$V_{DD} = 5V$		4.95		4.95	5		4.95		V
	Output Voltage	$V_{DD} = 10V$	$ I_O < 1 \ \mu A$	9.95		9.95	10		9.95		V
		$V_{DD} = 15V$		14.95		14.95	15		14.95		V
VIL	LOW Level	$V_{DD} = 5V, V_{O} = 0$.5V or 4.5V		1.5		2	1.5		1.5	V
	Input Voltage	$V_{DD} = 10V, V_{O} =$	1.0V or 9.0V		3.0		4	3.0		3.0	V
		$V_{DD} = 15V, V_O =$	1.5V or 13.5V		4.0		6	4.0		4.0	V
VIH	HIGH Level	$V_{DD} = 5V, V_{O} = 0$.5V or 4.5V	3.5		3.5	3		3.5		V
	Input Voltage	$V_{DD} = 10V, V_{O} =$	1.0V or 9.0V	7.0		7.0	6		7.0		V
		$V_{DD} = 15V, V_{O} =$	1.5V or 13.5V	11.0		11.0	9		11.0		V
l _{OL}	LOW Level Output	$V_{DD} = 5V, V_{O} = 0$	0.4V	0.52		0.44	0.88		0.36		mA
	Current (Note 4)	$V_{DD} = 10V, V_{O} =$	0.5V	1.3		1.1	2.2		0.9		mA
		$V_{DD} = 15V, V_{O} =$	1.5V	3.6		3.0	8		2.4		mA
I _{OH}	HIGH Level Output	$V_{DD} = 5V, V_{O} = 4$.6V	-0.52		-0.44	-0.88		-0.36		mA
	Current (Note 4)	$V_{DD} = 10V, V_{O} =$	9.5V	-1.3		-1.1	-2.2		-0.90		mA
		$V_{DD} = 15V, V_O =$	13.5V	-3.6		-3.0	-8		-2.4		mA
I _{IN}	Input Current	V _{DD} = 15V, V _{IN} =	0V		-0.3		-10 ⁻⁵	-0.3		-1.0	μA
		V _{DD} = 15V, V _{IN} = 15V			0.3		10 ⁻⁵	0.3		1.0	μA

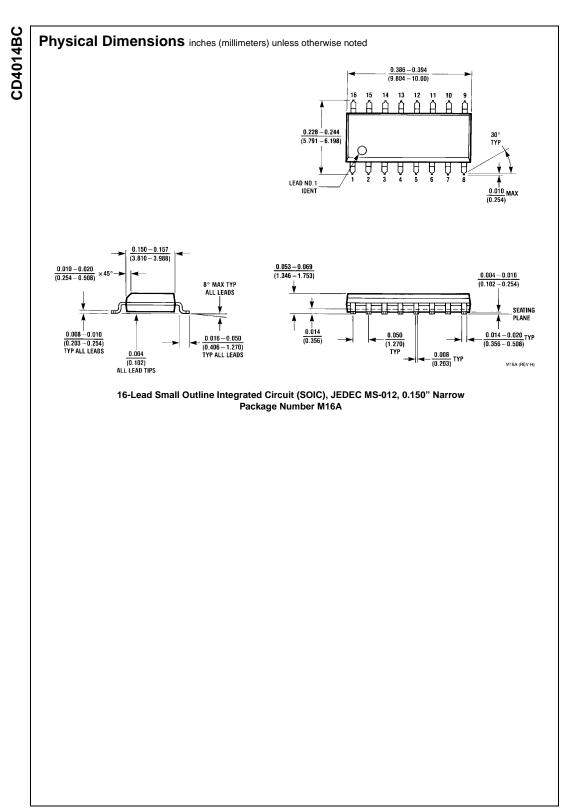
260°C

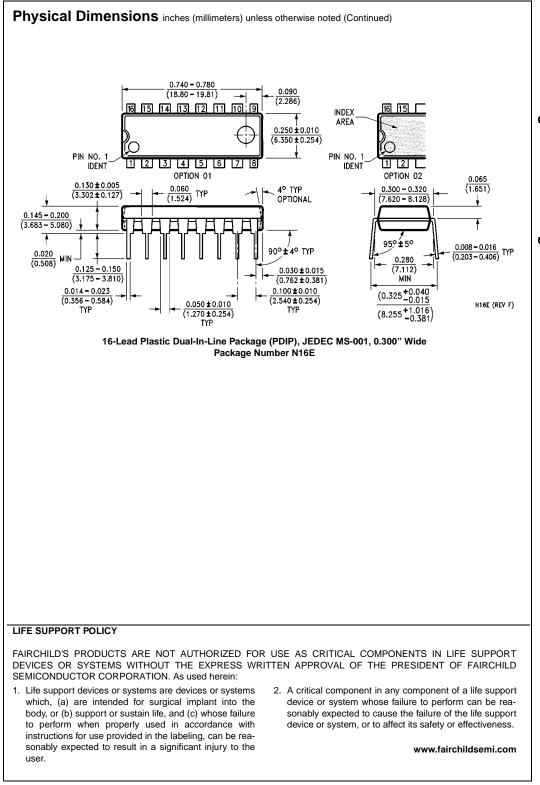
Note 4: I_{OL} and I_{OH} are tested one output at a time.

C
ш
4
Σ
0
4
Δ
C

AC Electrical Characteristics (Note 5) $T_A = 25^{\circ}C$. input t. $t_r = 20 \text{ ns. } C_1 = 50 \text{ pE} R_1 = 200 \text{ k}\Omega$


Symbol	Parameter	Conditions	Min	Тур	Max	Units
t _{PHL} , t _{PLH}	Propagation Delay Time	$V_{DD} = 5V$		200	320	ns
		$V_{DD} = 10V$		80	160	ns
		$V_{DD} = 15V$		60	120	ns
t _{THL} , t _{TLH}	Transition Time	$V_{DD} = 5V$		100	200	ns
		$V_{DD} = 10V$		50	100	ns
		$V_{DD} = 15V$		40	80	ns
f _{CL}	Maximum Clock	$V_{DD} = 5V$	2.8	4		MHz
	Input Frequency	$V_{DD} = 10V$	6	12		MHz
		$V_{DD} = 15V$	8	16		MHz
t _W	Minimum Clock	$V_{DD} = 5V$		90	180	ns
	Pulse Width	$V_{DD} = 10V$		40	80	ns
		$V_{DD} = 15V$		25	50	ns
t _{rCL} , t _{fCL}	Clock Rise and	$V_{DD} = 5V$			15	μs
	Fall Time (Note 6)	$V_{DD} = 10V$			15	μs
		$V_{DD} = 15V$			15	μs
t _S	Minimum Set-Up Time	$V_{DD} = 5V$		60	120	ns
	(Note 7) Serial Input	$V_{DD} = 10V$		40	80	ns
	t _H ≥ 200 ns	$V_{DD} = 15V$		30	60	ns
	Parallel Inputs	$V_{DD} = 5V$		80	160	ns
	t _H ≥ 200 ns	$V_{DD} = 10V$		40	80	ns
		$V_{DD} = 15V$		30	60	ns
	Parallel/Serial Control	$V_{DD} = 5V$		100	200	ns
	t _H ≥ 200 ns	$V_{DD} = 10V$		50	100	ns
		$V_{DD} = 15V$		40	80	ns
t _H	Minimum Hold Time	$V_{DD} = 5V$			0	ns
	Serial In, Parallel In, $t_S \ge 400 \text{ ns}$	$V_{DD} = 10V$			10	ns
	Parallel/Serial Control	$V_{DD} = 15V$			15	ns
CI	Average Input Capacitance	Any Input		5	7.5	pF
	(Note 8)					
C _{PD}	Power Dissipation Capacitance			110		pF
10	(Note 8)			1		


Note 5: AC Parameters are guaranteed by DC correlated testing.


Note 6: If more than one unit is cascaded trcL should be made less than or equal to the fixed propagation delay of the output of the driving stage for the estimated capacitive load.

Note 7: Setup times are measured with reference to clock and a fixed hold time (t_{H}) as specified.

Note 8: CPD determines the no load AC power consumption of any CMOS device. For complete explanation, see 74C family characteristics application note AN-90.

CD4014BC 8-Stage Static Shift Register

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.